ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dedlemb GIF version

Theorem dedlemb 965
Description: Lemma for iffalse 3534. (Contributed by NM, 15-May-1999.) (Proof shortened by Andrew Salmon, 7-May-2011.)
Assertion
Ref Expression
dedlemb 𝜑 → (𝜒 ↔ ((𝜓𝜑) ∨ (𝜒 ∧ ¬ 𝜑))))

Proof of Theorem dedlemb
StepHypRef Expression
1 olc 706 . . 3 ((𝜒 ∧ ¬ 𝜑) → ((𝜓𝜑) ∨ (𝜒 ∧ ¬ 𝜑)))
21expcom 115 . 2 𝜑 → (𝜒 → ((𝜓𝜑) ∨ (𝜒 ∧ ¬ 𝜑))))
3 pm2.21 612 . . . 4 𝜑 → (𝜑𝜒))
43adantld 276 . . 3 𝜑 → ((𝜓𝜑) → 𝜒))
5 simpl 108 . . . 4 ((𝜒 ∧ ¬ 𝜑) → 𝜒)
65a1i 9 . . 3 𝜑 → ((𝜒 ∧ ¬ 𝜑) → 𝜒))
74, 6jaod 712 . 2 𝜑 → (((𝜓𝜑) ∨ (𝜒 ∧ ¬ 𝜑)) → 𝜒))
82, 7impbid 128 1 𝜑 → (𝜒 ↔ ((𝜓𝜑) ∨ (𝜒 ∧ ¬ 𝜑))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 610  ax-io 704
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  iffalse  3534
  Copyright terms: Public domain W3C validator