ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm4.66dc GIF version

Theorem pm4.66dc 838
Description: Theorem *4.66 of [WhiteheadRussell] p. 120, given a decidability condition. (Contributed by Jim Kingdon, 2-May-2018.)
Assertion
Ref Expression
pm4.66dc (DECID 𝜑 → ((¬ 𝜑 → ¬ 𝜓) ↔ (𝜑 ∨ ¬ 𝜓)))

Proof of Theorem pm4.66dc
StepHypRef Expression
1 pm4.64dc 837 1 (DECID 𝜑 → ((¬ 𝜑 → ¬ 𝜓) ↔ (𝜑 ∨ ¬ 𝜓)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 103  wo 662  DECID wdc 778
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663
This theorem depends on definitions:  df-bi 115  df-dc 779
This theorem is referenced by:  pm4.54dc  841
  Copyright terms: Public domain W3C validator