ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm4.54dc GIF version

Theorem pm4.54dc 888
Description: Theorem *4.54 of [WhiteheadRussell] p. 120, for decidable propositions. One form of DeMorgan's law. (Contributed by Jim Kingdon, 2-May-2018.)
Assertion
Ref Expression
pm4.54dc (DECID 𝜑 → (DECID 𝜓 → ((¬ 𝜑𝜓) ↔ ¬ (𝜑 ∨ ¬ 𝜓))))

Proof of Theorem pm4.54dc
StepHypRef Expression
1 dcn 828 . . . . 5 (DECID 𝜑DECID ¬ 𝜑)
2 dfandc 870 . . . . 5 (DECID ¬ 𝜑 → (DECID 𝜓 → ((¬ 𝜑𝜓) ↔ ¬ (¬ 𝜑 → ¬ 𝜓))))
31, 2syl 14 . . . 4 (DECID 𝜑 → (DECID 𝜓 → ((¬ 𝜑𝜓) ↔ ¬ (¬ 𝜑 → ¬ 𝜓))))
43imp 123 . . 3 ((DECID 𝜑DECID 𝜓) → ((¬ 𝜑𝜓) ↔ ¬ (¬ 𝜑 → ¬ 𝜓)))
5 pm4.66dc 887 . . . . 5 (DECID 𝜑 → ((¬ 𝜑 → ¬ 𝜓) ↔ (𝜑 ∨ ¬ 𝜓)))
65adantr 274 . . . 4 ((DECID 𝜑DECID 𝜓) → ((¬ 𝜑 → ¬ 𝜓) ↔ (𝜑 ∨ ¬ 𝜓)))
76notbid 657 . . 3 ((DECID 𝜑DECID 𝜓) → (¬ (¬ 𝜑 → ¬ 𝜓) ↔ ¬ (𝜑 ∨ ¬ 𝜓)))
84, 7bitrd 187 . 2 ((DECID 𝜑DECID 𝜓) → ((¬ 𝜑𝜓) ↔ ¬ (𝜑 ∨ ¬ 𝜓)))
98ex 114 1 (DECID 𝜑 → (DECID 𝜓 → ((¬ 𝜑𝜓) ↔ ¬ (𝜑 ∨ ¬ 𝜓))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  DECID wdc 820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821
This theorem is referenced by:  pm4.55dc  923
  Copyright terms: Public domain W3C validator