Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm4.54dc | GIF version |
Description: Theorem *4.54 of [WhiteheadRussell] p. 120, for decidable propositions. One form of DeMorgan's law. (Contributed by Jim Kingdon, 2-May-2018.) |
Ref | Expression |
---|---|
pm4.54dc | ⊢ (DECID 𝜑 → (DECID 𝜓 → ((¬ 𝜑 ∧ 𝜓) ↔ ¬ (𝜑 ∨ ¬ 𝜓)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dcn 837 | . . . . 5 ⊢ (DECID 𝜑 → DECID ¬ 𝜑) | |
2 | dfandc 879 | . . . . 5 ⊢ (DECID ¬ 𝜑 → (DECID 𝜓 → ((¬ 𝜑 ∧ 𝜓) ↔ ¬ (¬ 𝜑 → ¬ 𝜓)))) | |
3 | 1, 2 | syl 14 | . . . 4 ⊢ (DECID 𝜑 → (DECID 𝜓 → ((¬ 𝜑 ∧ 𝜓) ↔ ¬ (¬ 𝜑 → ¬ 𝜓)))) |
4 | 3 | imp 123 | . . 3 ⊢ ((DECID 𝜑 ∧ DECID 𝜓) → ((¬ 𝜑 ∧ 𝜓) ↔ ¬ (¬ 𝜑 → ¬ 𝜓))) |
5 | pm4.66dc 896 | . . . . 5 ⊢ (DECID 𝜑 → ((¬ 𝜑 → ¬ 𝜓) ↔ (𝜑 ∨ ¬ 𝜓))) | |
6 | 5 | adantr 274 | . . . 4 ⊢ ((DECID 𝜑 ∧ DECID 𝜓) → ((¬ 𝜑 → ¬ 𝜓) ↔ (𝜑 ∨ ¬ 𝜓))) |
7 | 6 | notbid 662 | . . 3 ⊢ ((DECID 𝜑 ∧ DECID 𝜓) → (¬ (¬ 𝜑 → ¬ 𝜓) ↔ ¬ (𝜑 ∨ ¬ 𝜓))) |
8 | 4, 7 | bitrd 187 | . 2 ⊢ ((DECID 𝜑 ∧ DECID 𝜓) → ((¬ 𝜑 ∧ 𝜓) ↔ ¬ (𝜑 ∨ ¬ 𝜓))) |
9 | 8 | ex 114 | 1 ⊢ (DECID 𝜑 → (DECID 𝜓 → ((¬ 𝜑 ∧ 𝜓) ↔ ¬ (𝜑 ∨ ¬ 𝜓)))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 703 DECID wdc 829 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 |
This theorem depends on definitions: df-bi 116 df-stab 826 df-dc 830 |
This theorem is referenced by: pm4.55dc 933 |
Copyright terms: Public domain | W3C validator |