ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm4.64dc GIF version

Theorem pm4.64dc 895
Description: Theorem *4.64 of [WhiteheadRussell] p. 120, given a decidability condition. The reverse direction, pm2.53 717, holds for all propositions. (Contributed by Jim Kingdon, 2-May-2018.)
Assertion
Ref Expression
pm4.64dc (DECID 𝜑 → ((¬ 𝜑𝜓) ↔ (𝜑𝜓)))

Proof of Theorem pm4.64dc
StepHypRef Expression
1 dfordc 887 . 2 (DECID 𝜑 → ((𝜑𝜓) ↔ (¬ 𝜑𝜓)))
21bicomd 140 1 (DECID 𝜑 → ((¬ 𝜑𝜓) ↔ (𝜑𝜓)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 104  wo 703  DECID wdc 829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704
This theorem depends on definitions:  df-bi 116  df-dc 830
This theorem is referenced by:  pm4.66dc  896
  Copyright terms: Public domain W3C validator