Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm4.82 | GIF version |
Description: Theorem *4.82 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
pm4.82 | ⊢ (((𝜑 → 𝜓) ∧ (𝜑 → ¬ 𝜓)) ↔ ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.65 649 | . . 3 ⊢ ((𝜑 → 𝜓) → ((𝜑 → ¬ 𝜓) → ¬ 𝜑)) | |
2 | 1 | imp 123 | . 2 ⊢ (((𝜑 → 𝜓) ∧ (𝜑 → ¬ 𝜓)) → ¬ 𝜑) |
3 | pm2.21 607 | . . 3 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
4 | pm2.21 607 | . . 3 ⊢ (¬ 𝜑 → (𝜑 → ¬ 𝜓)) | |
5 | 3, 4 | jca 304 | . 2 ⊢ (¬ 𝜑 → ((𝜑 → 𝜓) ∧ (𝜑 → ¬ 𝜓))) |
6 | 2, 5 | impbii 125 | 1 ⊢ (((𝜑 → 𝜓) ∧ (𝜑 → ¬ 𝜓)) ↔ ¬ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |