ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm4.82 GIF version

Theorem pm4.82 945
Description: Theorem *4.82 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm4.82 (((𝜑𝜓) ∧ (𝜑 → ¬ 𝜓)) ↔ ¬ 𝜑)

Proof of Theorem pm4.82
StepHypRef Expression
1 pm2.65 654 . . 3 ((𝜑𝜓) → ((𝜑 → ¬ 𝜓) → ¬ 𝜑))
21imp 123 . 2 (((𝜑𝜓) ∧ (𝜑 → ¬ 𝜓)) → ¬ 𝜑)
3 pm2.21 612 . . 3 𝜑 → (𝜑𝜓))
4 pm2.21 612 . . 3 𝜑 → (𝜑 → ¬ 𝜓))
53, 4jca 304 . 2 𝜑 → ((𝜑𝜓) ∧ (𝜑 → ¬ 𝜓)))
62, 5impbii 125 1 (((𝜑𝜓) ∧ (𝜑 → ¬ 𝜓)) ↔ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator