| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > pm4.83dc | GIF version | ||
| Description: Theorem *4.83 of [WhiteheadRussell] p. 122, for decidable propositions. As with other case elimination theorems, like pm2.61dc 866, it only holds for decidable propositions. (Contributed by Jim Kingdon, 12-May-2018.) | 
| Ref | Expression | 
|---|---|
| pm4.83dc | ⊢ (DECID 𝜑 → (((𝜑 → 𝜓) ∧ (¬ 𝜑 → 𝜓)) ↔ 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-dc 836 | . . 3 ⊢ (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑)) | |
| 2 | pm3.44 716 | . . . 4 ⊢ (((𝜑 → 𝜓) ∧ (¬ 𝜑 → 𝜓)) → ((𝜑 ∨ ¬ 𝜑) → 𝜓)) | |
| 3 | 2 | com12 30 | . . 3 ⊢ ((𝜑 ∨ ¬ 𝜑) → (((𝜑 → 𝜓) ∧ (¬ 𝜑 → 𝜓)) → 𝜓)) | 
| 4 | 1, 3 | sylbi 121 | . 2 ⊢ (DECID 𝜑 → (((𝜑 → 𝜓) ∧ (¬ 𝜑 → 𝜓)) → 𝜓)) | 
| 5 | ax-1 6 | . . 3 ⊢ (𝜓 → (𝜑 → 𝜓)) | |
| 6 | ax-1 6 | . . 3 ⊢ (𝜓 → (¬ 𝜑 → 𝜓)) | |
| 7 | 5, 6 | jca 306 | . 2 ⊢ (𝜓 → ((𝜑 → 𝜓) ∧ (¬ 𝜑 → 𝜓))) | 
| 8 | 4, 7 | impbid1 142 | 1 ⊢ (DECID 𝜑 → (((𝜑 → 𝜓) ∧ (¬ 𝜑 → 𝜓)) ↔ 𝜓)) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 DECID wdc 835 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |