ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm5.21im GIF version

Theorem pm5.21im 686
Description: Two propositions are equivalent if they are both false. Closed form of 2false 691. Equivalent to a biimpr 129-like version of the xor-connective. (Contributed by Wolf Lammen, 13-May-2013.) (Revised by Mario Carneiro, 31-Jan-2015.)
Assertion
Ref Expression
pm5.21im 𝜑 → (¬ 𝜓 → (𝜑𝜓)))

Proof of Theorem pm5.21im
StepHypRef Expression
1 pm5.21 685 . 2 ((¬ 𝜑 ∧ ¬ 𝜓) → (𝜑𝜓))
21ex 114 1 𝜑 → (¬ 𝜓 → (𝜑𝜓)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 605
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  nbn2  687
  Copyright terms: Public domain W3C validator