| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimpr | GIF version | ||
| Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999.) (Proof shortened by Wolf Lammen, 11-Nov-2012.) |
| Ref | Expression |
|---|---|
| biimpr | ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bi 117 | . . 3 ⊢ (((𝜑 ↔ 𝜓) → ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) ∧ (((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓))) | |
| 2 | 1 | simpli 111 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) |
| 3 | 2 | simprd 114 | 1 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bicom1 131 pm5.74 179 bi3ant 224 pm5.32d 450 notbi 670 nbn2 702 pm4.72 832 con4biddc 862 con1biimdc 878 bijadc 887 pclem6 1416 exbir 1479 simplbi2comg 1486 albi 1514 exbi 1650 equsexd 1775 cbv2h 1794 cbv2w 1796 sbiedh 1833 ceqsalt 2826 spcegft 2882 elab3gf 2953 euind 2990 reu6 2992 reuind 3008 sbciegft 3059 iota4 5298 fv3 5650 algcvgblem 12571 bj-inf2vnlem1 16333 |
| Copyright terms: Public domain | W3C validator |