| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimpr | GIF version | ||
| Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999.) (Proof shortened by Wolf Lammen, 11-Nov-2012.) |
| Ref | Expression |
|---|---|
| biimpr | ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bi 117 | . . 3 ⊢ (((𝜑 ↔ 𝜓) → ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) ∧ (((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓))) | |
| 2 | 1 | simpli 111 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) |
| 3 | 2 | simprd 114 | 1 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bicom1 131 pm5.74 179 bi3ant 224 pm5.32d 450 notbi 668 nbn2 699 pm4.72 829 con4biddc 859 con1biimdc 875 bijadc 884 pclem6 1394 exbir 1456 simplbi2comg 1463 albi 1491 exbi 1627 equsexd 1752 cbv2h 1771 cbv2w 1773 sbiedh 1810 ceqsalt 2798 spcegft 2852 elab3gf 2923 euind 2960 reu6 2962 reuind 2978 sbciegft 3029 iota4 5252 fv3 5601 algcvgblem 12404 bj-inf2vnlem1 15943 |
| Copyright terms: Public domain | W3C validator |