Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > biimpr | GIF version |
Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999.) (Proof shortened by Wolf Lammen, 11-Nov-2012.) |
Ref | Expression |
---|---|
biimpr | ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bi 116 | . . 3 ⊢ (((𝜑 ↔ 𝜓) → ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) ∧ (((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓))) | |
2 | 1 | simpli 110 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) |
3 | 2 | simprd 113 | 1 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: bicom1 130 pm5.74 178 bi3ant 223 pm5.32d 447 notbi 661 nbn2 692 pm4.72 822 con4biddc 852 con1biimdc 868 bijadc 877 pclem6 1369 exbir 1429 simplbi2comg 1436 albi 1461 exbi 1597 equsexd 1722 cbv2h 1741 cbv2w 1743 sbiedh 1780 ceqsalt 2756 spcegft 2809 elab3gf 2880 euind 2917 reu6 2919 reuind 2935 sbciegft 2985 iota4 5178 fv3 5519 algcvgblem 12003 bj-inf2vnlem1 14005 |
Copyright terms: Public domain | W3C validator |