ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biimpr GIF version

Theorem biimpr 130
Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999.) (Proof shortened by Wolf Lammen, 11-Nov-2012.)
Assertion
Ref Expression
biimpr ((𝜑𝜓) → (𝜓𝜑))

Proof of Theorem biimpr
StepHypRef Expression
1 df-bi 117 . . 3 (((𝜑𝜓) → ((𝜑𝜓) ∧ (𝜓𝜑))) ∧ (((𝜑𝜓) ∧ (𝜓𝜑)) → (𝜑𝜓)))
21simpli 111 . 2 ((𝜑𝜓) → ((𝜑𝜓) ∧ (𝜓𝜑)))
32simprd 114 1 ((𝜑𝜓) → (𝜓𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  bicom1  131  pm5.74  179  bi3ant  224  pm5.32d  450  notbi  666  nbn2  697  pm4.72  827  con4biddc  857  con1biimdc  873  bijadc  882  pclem6  1374  exbir  1436  simplbi2comg  1443  albi  1468  exbi  1604  equsexd  1729  cbv2h  1748  cbv2w  1750  sbiedh  1787  ceqsalt  2765  spcegft  2818  elab3gf  2889  euind  2926  reu6  2928  reuind  2944  sbciegft  2995  iota4  5198  fv3  5540  algcvgblem  12051  bj-inf2vnlem1  14807
  Copyright terms: Public domain W3C validator