![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biimpr | GIF version |
Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999.) (Proof shortened by Wolf Lammen, 11-Nov-2012.) |
Ref | Expression |
---|---|
biimpr | ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bi 117 | . . 3 ⊢ (((𝜑 ↔ 𝜓) → ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) ∧ (((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓))) | |
2 | 1 | simpli 111 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) |
3 | 2 | simprd 114 | 1 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: bicom1 131 pm5.74 179 bi3ant 224 pm5.32d 450 notbi 667 nbn2 698 pm4.72 828 con4biddc 858 con1biimdc 874 bijadc 883 pclem6 1385 exbir 1447 simplbi2comg 1454 albi 1479 exbi 1615 equsexd 1740 cbv2h 1759 cbv2w 1761 sbiedh 1798 ceqsalt 2786 spcegft 2840 elab3gf 2911 euind 2948 reu6 2950 reuind 2966 sbciegft 3017 iota4 5235 fv3 5578 algcvgblem 12190 bj-inf2vnlem1 15532 |
Copyright terms: Public domain | W3C validator |