Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > biimpr | GIF version |
Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999.) (Proof shortened by Wolf Lammen, 11-Nov-2012.) |
Ref | Expression |
---|---|
biimpr | ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bi 116 | . . 3 ⊢ (((𝜑 ↔ 𝜓) → ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) ∧ (((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓))) | |
2 | 1 | simpli 110 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) |
3 | 2 | simprd 113 | 1 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: bicom1 130 pm5.74 178 bi3ant 223 pm5.32d 446 notbi 656 nbn2 687 pm4.72 817 con4biddc 847 con1biimdc 863 bijadc 872 pclem6 1364 exbir 1424 simplbi2comg 1431 albi 1456 exbi 1592 equsexd 1717 cbv2h 1736 cbv2w 1738 sbiedh 1775 ceqsalt 2752 spcegft 2805 elab3gf 2876 euind 2913 reu6 2915 reuind 2931 sbciegft 2981 iota4 5171 fv3 5509 algcvgblem 11981 bj-inf2vnlem1 13852 |
Copyright terms: Public domain | W3C validator |