![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biimpr | GIF version |
Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999.) (Proof shortened by Wolf Lammen, 11-Nov-2012.) |
Ref | Expression |
---|---|
biimpr | ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bi 117 | . . 3 ⊢ (((𝜑 ↔ 𝜓) → ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) ∧ (((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓))) | |
2 | 1 | simpli 111 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) |
3 | 2 | simprd 114 | 1 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: bicom1 131 pm5.74 179 bi3ant 224 pm5.32d 450 notbi 667 nbn2 698 pm4.72 828 con4biddc 858 con1biimdc 874 bijadc 883 pclem6 1385 exbir 1447 simplbi2comg 1454 albi 1479 exbi 1615 equsexd 1740 cbv2h 1759 cbv2w 1761 sbiedh 1798 ceqsalt 2778 spcegft 2831 elab3gf 2902 euind 2939 reu6 2941 reuind 2957 sbciegft 3008 iota4 5215 fv3 5557 algcvgblem 12080 bj-inf2vnlem1 15175 |
Copyright terms: Public domain | W3C validator |