ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biimpr GIF version

Theorem biimpr 130
Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999.) (Proof shortened by Wolf Lammen, 11-Nov-2012.)
Assertion
Ref Expression
biimpr ((𝜑𝜓) → (𝜓𝜑))

Proof of Theorem biimpr
StepHypRef Expression
1 df-bi 117 . . 3 (((𝜑𝜓) → ((𝜑𝜓) ∧ (𝜓𝜑))) ∧ (((𝜑𝜓) ∧ (𝜓𝜑)) → (𝜑𝜓)))
21simpli 111 . 2 ((𝜑𝜓) → ((𝜑𝜓) ∧ (𝜓𝜑)))
32simprd 114 1 ((𝜑𝜓) → (𝜓𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  bicom1  131  pm5.74  179  bi3ant  224  pm5.32d  450  notbi  667  nbn2  698  pm4.72  828  con4biddc  858  con1biimdc  874  bijadc  883  pclem6  1385  exbir  1447  simplbi2comg  1454  albi  1479  exbi  1615  equsexd  1740  cbv2h  1759  cbv2w  1761  sbiedh  1798  ceqsalt  2778  spcegft  2831  elab3gf  2902  euind  2939  reu6  2941  reuind  2957  sbciegft  3008  iota4  5215  fv3  5557  algcvgblem  12080  bj-inf2vnlem1  15175
  Copyright terms: Public domain W3C validator