ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biimpr GIF version

Theorem biimpr 130
Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999.) (Proof shortened by Wolf Lammen, 11-Nov-2012.)
Assertion
Ref Expression
biimpr ((𝜑𝜓) → (𝜓𝜑))

Proof of Theorem biimpr
StepHypRef Expression
1 df-bi 117 . . 3 (((𝜑𝜓) → ((𝜑𝜓) ∧ (𝜓𝜑))) ∧ (((𝜑𝜓) ∧ (𝜓𝜑)) → (𝜑𝜓)))
21simpli 111 . 2 ((𝜑𝜓) → ((𝜑𝜓) ∧ (𝜓𝜑)))
32simprd 114 1 ((𝜑𝜓) → (𝜓𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  bicom1  131  pm5.74  179  bi3ant  224  pm5.32d  450  notbi  668  nbn2  699  pm4.72  829  con4biddc  859  con1biimdc  875  bijadc  884  pclem6  1394  exbir  1457  simplbi2comg  1464  albi  1492  exbi  1628  equsexd  1753  cbv2h  1772  cbv2w  1774  sbiedh  1811  ceqsalt  2803  spcegft  2859  elab3gf  2930  euind  2967  reu6  2969  reuind  2985  sbciegft  3036  iota4  5270  fv3  5622  algcvgblem  12486  bj-inf2vnlem1  16105
  Copyright terms: Public domain W3C validator