Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > prlem2 | GIF version |
Description: A specialized lemma for set theory (to derive the Axiom of Pairing). (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 13-May-2011.) (Proof shortened by Wolf Lammen, 9-Dec-2012.) |
Ref | Expression |
---|---|
prlem2 | ⊢ (((𝜑 ∧ 𝜓) ∨ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∨ 𝜒) ∧ ((𝜑 ∧ 𝜓) ∨ (𝜒 ∧ 𝜃)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
2 | simpl 108 | . . 3 ⊢ ((𝜒 ∧ 𝜃) → 𝜒) | |
3 | 1, 2 | orim12i 754 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∨ (𝜒 ∧ 𝜃)) → (𝜑 ∨ 𝜒)) |
4 | 3 | pm4.71ri 390 | 1 ⊢ (((𝜑 ∧ 𝜓) ∨ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∨ 𝜒) ∧ ((𝜑 ∧ 𝜓) ∨ (𝜒 ∧ 𝜃)))) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∨ wo 703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |