![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pm4.71ri | GIF version |
Description: Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120 (with conjunct reversed). (Contributed by NM, 1-Dec-2003.) |
Ref | Expression |
---|---|
pm4.71ri.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
pm4.71ri | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.71ri.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | pm4.71r 390 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 ↔ (𝜓 ∧ 𝜑))) | |
3 | 1, 2 | mpbi 145 | 1 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: biadan2 456 anabs7 574 biadani 612 orabs 814 prlem2 974 sb6 1886 2moswapdc 2116 exsnrex 3634 eliunxp 4766 asymref 5014 elxp4 5116 elxp5 5117 dffun9 5245 funcnv 5277 funcnv3 5278 f1ompt 5667 eufnfv 5747 dff1o6 5776 abexex 6126 dfoprab4 6192 tpostpos 6264 erovlem 6626 elixp2 6701 xpsnen 6820 ctssdccl 7109 ltbtwnnq 7414 enq0enq 7429 prnmaxl 7486 prnminu 7487 elznn0nn 9266 zrevaddcl 9302 qrevaddcl 9643 climreu 11304 isprm3 12117 isprm4 12118 xpscf 12765 tgval2 13521 eltg2b 13524 isms2 13924 |
Copyright terms: Public domain | W3C validator |