| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm4.71ri | GIF version | ||
| Description: Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120 (with conjunct reversed). (Contributed by NM, 1-Dec-2003.) |
| Ref | Expression |
|---|---|
| pm4.71ri.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| pm4.71ri | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.71ri.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | pm4.71r 390 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 ↔ (𝜓 ∧ 𝜑))) | |
| 3 | 1, 2 | mpbi 145 | 1 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biadan2 456 anabs7 574 biadani 612 orabs 816 prlem2 977 sb6 1911 2moswapdc 2145 exsnrex 3680 eliunxp 4830 asymref 5082 elxp4 5184 elxp5 5185 dffun9 5314 funcnv 5349 funcnv3 5350 f1ompt 5749 eufnfv 5833 dff1o6 5863 abexex 6229 dfoprab4 6296 tpostpos 6368 erovlem 6732 elixp2 6807 xpsnen 6936 ctssdccl 7234 ltbtwnnq 7559 enq0enq 7574 prnmaxl 7631 prnminu 7632 elznn0nn 9416 zrevaddcl 9453 qrevaddcl 9795 climreu 11693 isprm3 12525 isprm4 12526 xpscf 13264 tgval2 14608 eltg2b 14611 isms2 15011 2lgslem1b 15651 |
| Copyright terms: Public domain | W3C validator |