| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm4.71ri | GIF version | ||
| Description: Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120 (with conjunct reversed). (Contributed by NM, 1-Dec-2003.) |
| Ref | Expression |
|---|---|
| pm4.71ri.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| pm4.71ri | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.71ri.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | pm4.71r 390 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 ↔ (𝜓 ∧ 𝜑))) | |
| 3 | 1, 2 | mpbi 145 | 1 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biadan2 456 anabs7 574 biadani 612 orabs 816 prlem2 977 sb6 1910 2moswapdc 2144 exsnrex 3675 eliunxp 4817 asymref 5068 elxp4 5170 elxp5 5171 dffun9 5300 funcnv 5335 funcnv3 5336 f1ompt 5731 eufnfv 5815 dff1o6 5845 abexex 6211 dfoprab4 6278 tpostpos 6350 erovlem 6714 elixp2 6789 xpsnen 6916 ctssdccl 7213 ltbtwnnq 7529 enq0enq 7544 prnmaxl 7601 prnminu 7602 elznn0nn 9386 zrevaddcl 9423 qrevaddcl 9765 climreu 11608 isprm3 12440 isprm4 12441 xpscf 13179 tgval2 14523 eltg2b 14526 isms2 14926 2lgslem1b 15566 |
| Copyright terms: Public domain | W3C validator |