Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm4.71ri | GIF version |
Description: Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120 (with conjunct reversed). (Contributed by NM, 1-Dec-2003.) |
Ref | Expression |
---|---|
pm4.71ri.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
pm4.71ri | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.71ri.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | pm4.71r 388 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 ↔ (𝜓 ∧ 𝜑))) | |
3 | 1, 2 | mpbi 144 | 1 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: biadan2 452 anabs7 564 biadani 602 orabs 804 prlem2 964 sb6 1874 2moswapdc 2104 exsnrex 3618 eliunxp 4743 asymref 4989 elxp4 5091 elxp5 5092 dffun9 5217 funcnv 5249 funcnv3 5250 f1ompt 5636 eufnfv 5715 dff1o6 5744 abexex 6094 dfoprab4 6160 tpostpos 6232 erovlem 6593 elixp2 6668 xpsnen 6787 ctssdccl 7076 ltbtwnnq 7357 enq0enq 7372 prnmaxl 7429 prnminu 7430 elznn0nn 9205 zrevaddcl 9241 qrevaddcl 9582 climreu 11238 isprm3 12050 isprm4 12051 tgval2 12691 eltg2b 12694 isms2 13094 |
Copyright terms: Public domain | W3C validator |