| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm4.71ri | GIF version | ||
| Description: Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120 (with conjunct reversed). (Contributed by NM, 1-Dec-2003.) |
| Ref | Expression |
|---|---|
| pm4.71ri.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| pm4.71ri | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.71ri.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | pm4.71r 390 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 ↔ (𝜓 ∧ 𝜑))) | |
| 3 | 1, 2 | mpbi 145 | 1 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biadan2 456 anabs7 574 biadani 612 orabs 815 prlem2 976 sb6 1909 2moswapdc 2143 exsnrex 3674 eliunxp 4816 asymref 5067 elxp4 5169 elxp5 5170 dffun9 5299 funcnv 5334 funcnv3 5335 f1ompt 5730 eufnfv 5814 dff1o6 5844 abexex 6210 dfoprab4 6277 tpostpos 6349 erovlem 6713 elixp2 6788 xpsnen 6915 ctssdccl 7212 ltbtwnnq 7528 enq0enq 7543 prnmaxl 7600 prnminu 7601 elznn0nn 9385 zrevaddcl 9422 qrevaddcl 9764 climreu 11550 isprm3 12382 isprm4 12383 xpscf 13121 tgval2 14465 eltg2b 14468 isms2 14868 2lgslem1b 15508 |
| Copyright terms: Public domain | W3C validator |