![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pm4.71ri | GIF version |
Description: Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120 (with conjunct reversed). (Contributed by NM, 1-Dec-2003.) |
Ref | Expression |
---|---|
pm4.71ri.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
pm4.71ri | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.71ri.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | pm4.71r 390 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 ↔ (𝜓 ∧ 𝜑))) | |
3 | 1, 2 | mpbi 145 | 1 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: biadan2 456 anabs7 574 biadani 612 orabs 814 prlem2 974 sb6 1886 2moswapdc 2116 exsnrex 3636 eliunxp 4768 asymref 5016 elxp4 5118 elxp5 5119 dffun9 5247 funcnv 5279 funcnv3 5280 f1ompt 5669 eufnfv 5749 dff1o6 5779 abexex 6129 dfoprab4 6195 tpostpos 6267 erovlem 6629 elixp2 6704 xpsnen 6823 ctssdccl 7112 ltbtwnnq 7417 enq0enq 7432 prnmaxl 7489 prnminu 7490 elznn0nn 9269 zrevaddcl 9305 qrevaddcl 9646 climreu 11307 isprm3 12120 isprm4 12121 xpscf 12771 tgval2 13590 eltg2b 13593 isms2 13993 |
Copyright terms: Public domain | W3C validator |