| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm4.71ri | GIF version | ||
| Description: Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120 (with conjunct reversed). (Contributed by NM, 1-Dec-2003.) |
| Ref | Expression |
|---|---|
| pm4.71ri.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| pm4.71ri | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.71ri.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | pm4.71r 390 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 ↔ (𝜓 ∧ 𝜑))) | |
| 3 | 1, 2 | mpbi 145 | 1 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biadan2 456 anabs7 574 biadani 614 orabs 819 prlem2 980 sb6 1933 2moswapdc 2168 exsnrex 3708 eliunxp 4860 asymref 5113 elxp4 5215 elxp5 5216 dffun9 5346 funcnv 5381 funcnv3 5382 f1ompt 5785 eufnfv 5869 dff1o6 5899 abexex 6269 dfoprab4 6336 tpostpos 6408 erovlem 6772 elixp2 6847 xpsnen 6976 ctssdccl 7274 ltbtwnnq 7599 enq0enq 7614 prnmaxl 7671 prnminu 7672 elznn0nn 9456 zrevaddcl 9493 qrevaddcl 9835 climreu 11803 isprm3 12635 isprm4 12636 xpscf 13375 tgval2 14719 eltg2b 14722 isms2 15122 2lgslem1b 15762 |
| Copyright terms: Public domain | W3C validator |