ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexbid2 GIF version

Theorem rexbid2 2510
Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by BJ, 14-Jul-2024.)
Hypotheses
Ref Expression
rexbid2.nf 𝑥𝜑
rexbid2.1 (𝜑 → ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜒)))
Assertion
Ref Expression
rexbid2 (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐵 𝜒))

Proof of Theorem rexbid2
StepHypRef Expression
1 rexbid2.nf . . 3 𝑥𝜑
2 rexbid2.1 . . 3 (𝜑 → ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜒)))
31, 2exbid 1638 . 2 (𝜑 → (∃𝑥(𝑥𝐴𝜓) ↔ ∃𝑥(𝑥𝐵𝜒)))
4 df-rex 2489 . 2 (∃𝑥𝐴 𝜓 ↔ ∃𝑥(𝑥𝐴𝜓))
5 df-rex 2489 . 2 (∃𝑥𝐵 𝜒 ↔ ∃𝑥(𝑥𝐵𝜒))
63, 4, 53bitr4g 223 1 (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐵 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wnf 1482  wex 1514  wcel 2175  wrex 2484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-4 1532  ax-ial 1556
This theorem depends on definitions:  df-bi 117  df-nf 1483  df-rex 2489
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator