Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3bitr4g | GIF version |
Description: More general version of 3bitr4i 211. Useful for converting definitions in a formula. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
3bitr4g.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3bitr4g.2 | ⊢ (𝜃 ↔ 𝜓) |
3bitr4g.3 | ⊢ (𝜏 ↔ 𝜒) |
Ref | Expression |
---|---|
3bitr4g | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr4g.2 | . . 3 ⊢ (𝜃 ↔ 𝜓) | |
2 | 3bitr4g.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | syl5bb 191 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
4 | 3bitr4g.3 | . 2 ⊢ (𝜏 ↔ 𝜒) | |
5 | 3, 4 | bitr4di 197 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: bibi1d 232 pm5.32rd 447 orbi1d 781 stbid 818 dcbid 824 pm4.14dc 876 orbididc 938 3orbi123d 1293 3anbi123d 1294 xorbi2d 1362 xorbi1d 1363 nfbidf 1519 drnf1 1713 drnf2 1714 drsb1 1779 sbal2 2000 eubidh 2012 eubid 2013 mobidh 2040 mobid 2041 eqeq1 2164 eqeq2 2167 eleq1w 2218 eleq2w 2219 eleq1 2220 eleq2 2221 cbvabw 2280 nfceqdf 2298 drnfc1 2316 drnfc2 2317 neeq1 2340 neeq2 2341 neleq1 2426 neleq2 2427 dfrex2dc 2448 ralbida 2451 rexbida 2452 ralbidv2 2459 rexbidv2 2460 ralbid2 2461 rexbid2 2462 r19.21t 2532 r19.23t 2564 reubida 2638 rmobida 2643 raleqf 2648 rexeqf 2649 reueq1f 2650 rmoeq1f 2651 cbvraldva2 2687 cbvrexdva2 2688 dfsbcq 2939 sbcbi2 2987 sbcbid 2994 eqsbc3r 2997 sbcabel 3018 sbnfc2 3091 ssconb 3240 uneq1 3254 ineq1 3301 difin2 3369 reuun2 3390 reldisj 3445 undif4 3456 disjssun 3457 sbcssg 3503 eltpg 3604 raltpg 3612 rextpg 3613 r19.12sn 3625 opeq1 3741 opeq2 3742 intmin4 3835 dfiun2g 3881 iindif2m 3916 iinin2m 3917 breq 3967 breq1 3968 breq2 3969 treq 4068 opthg2 4198 poeq1 4258 soeq1 4274 frforeq1 4302 freq1 4303 frforeq2 4304 freq2 4305 frforeq3 4306 weeq1 4315 weeq2 4316 ordeq 4331 limeq 4336 rabxfrd 4427 iunpw 4438 opthprc 4634 releq 4665 sbcrel 4669 eqrel 4672 eqrelrel 4684 xpiindim 4720 brcnvg 4764 brresg 4871 resieq 4873 xpcanm 5022 xpcan2m 5023 dmsnopg 5054 dfco2a 5083 cnvpom 5125 cnvsom 5126 iotaeq 5140 sniota 5159 sbcfung 5191 fneq1 5255 fneq2 5256 feq1 5299 feq2 5300 feq3 5301 sbcfng 5314 sbcfg 5315 f1eq1 5367 f1eq2 5368 f1eq3 5369 foeq1 5385 foeq2 5386 foeq3 5387 f1oeq1 5400 f1oeq2 5401 f1oeq3 5402 fun11iun 5432 mpteqb 5555 dffo3 5611 fmptco 5630 dff13 5713 f1imaeq 5720 f1eqcocnv 5736 fliftcnv 5740 isoeq1 5746 isoeq2 5747 isoeq3 5748 isoeq4 5749 isoeq5 5750 isocnv2 5757 acexmid 5817 fnotovb 5858 mpoeq123 5874 ottposg 6196 dmtpos 6197 smoeq 6231 nnacan 6452 nnmcan 6459 ereq1 6480 ereq2 6481 elecg 6511 ereldm 6516 ixpiinm 6662 enfi 6811 elfi2 6909 fipwssg 6916 ctssdccl 7045 creur 8813 eqreznegel 9505 ltxr 9664 icoshftf1o 9877 elfzm11 9975 elfzomelpfzo 10112 nn0ennn 10314 nnesq 10519 rexfiuz 10871 cau4 10998 sumeq2 11238 fisumcom2 11317 fprodcom2fi 11505 dvdsflip 11724 divgcdcoprm0 11958 hashdvds 12073 tpspropd 12394 tgss2 12439 lmbr2 12574 txcnmpt 12633 txhmeo 12679 blininf 12784 blres 12794 xmeterval 12795 xmspropd 12837 mspropd 12838 metequiv 12855 xmetxpbl 12868 limcdifap 12991 cbvrald 13322 |
Copyright terms: Public domain | W3C validator |