Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3bitr4g | GIF version |
Description: More general version of 3bitr4i 211. Useful for converting definitions in a formula. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
3bitr4g.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3bitr4g.2 | ⊢ (𝜃 ↔ 𝜓) |
3bitr4g.3 | ⊢ (𝜏 ↔ 𝜒) |
Ref | Expression |
---|---|
3bitr4g | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr4g.2 | . . 3 ⊢ (𝜃 ↔ 𝜓) | |
2 | 3bitr4g.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | syl5bb 191 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
4 | 3bitr4g.3 | . 2 ⊢ (𝜏 ↔ 𝜒) | |
5 | 3, 4 | bitr4di 197 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: bibi1d 232 pm5.32rd 448 orbi1d 786 stbid 827 dcbid 833 pm4.14dc 885 orbididc 948 3orbi123d 1306 3anbi123d 1307 xorbi2d 1375 xorbi1d 1376 nfbidf 1532 drnf1 1726 drnf2 1727 drsb1 1792 sbal2 2013 eubidh 2025 eubid 2026 mobidh 2053 mobid 2054 eqeq1 2177 eqeq2 2180 eleq1w 2231 eleq2w 2232 eleq1 2233 eleq2 2234 cbvabw 2293 nfceqdf 2311 drnfc1 2329 drnfc2 2330 neeq1 2353 neeq2 2354 neleq1 2439 neleq2 2440 dfrex2dc 2461 ralbida 2464 rexbida 2465 ralbidv2 2472 rexbidv2 2473 ralbid2 2474 rexbid2 2475 r19.21t 2545 r19.23t 2577 reubida 2651 rmobida 2656 raleqf 2661 rexeqf 2662 reueq1f 2663 rmoeq1f 2664 cbvraldva2 2703 cbvrexdva2 2704 dfsbcq 2957 sbcbi2 3005 sbcbid 3012 eqsbc2 3015 sbcabel 3036 sbnfc2 3109 ssconb 3260 uneq1 3274 ineq1 3321 difin2 3389 reuun2 3410 reldisj 3466 undif4 3477 disjssun 3478 sbcssg 3524 eltpg 3628 raltpg 3636 rextpg 3637 r19.12sn 3649 opeq1 3765 opeq2 3766 intmin4 3859 dfiun2g 3905 iindif2m 3940 iinin2m 3941 breq 3991 breq1 3992 breq2 3993 treq 4093 opthg2 4224 poeq1 4284 soeq1 4300 frforeq1 4328 freq1 4329 frforeq2 4330 freq2 4331 frforeq3 4332 weeq1 4341 weeq2 4342 ordeq 4357 limeq 4362 rabxfrd 4454 iunpw 4465 opthprc 4662 releq 4693 sbcrel 4697 eqrel 4700 eqrelrel 4712 xpiindim 4748 brcnvg 4792 brresg 4899 resieq 4901 xpcanm 5050 xpcan2m 5051 dmsnopg 5082 dfco2a 5111 cnvpom 5153 cnvsom 5154 iotaeq 5168 sniota 5189 sbcfung 5222 fneq1 5286 fneq2 5287 feq1 5330 feq2 5331 feq3 5332 sbcfng 5345 sbcfg 5346 f1eq1 5398 f1eq2 5399 f1eq3 5400 foeq1 5416 foeq2 5417 foeq3 5418 f1oeq1 5431 f1oeq2 5432 f1oeq3 5433 fun11iun 5463 mpteqb 5586 dffo3 5643 fmptco 5662 dff13 5747 f1imaeq 5754 f1eqcocnv 5770 fliftcnv 5774 isoeq1 5780 isoeq2 5781 isoeq3 5782 isoeq4 5783 isoeq5 5784 isocnv2 5791 acexmid 5852 fnotovb 5896 mpoeq123 5912 ottposg 6234 dmtpos 6235 smoeq 6269 nnacan 6491 nnmcan 6498 ereq1 6520 ereq2 6521 elecg 6551 ereldm 6556 ixpiinm 6702 enfi 6851 elfi2 6949 fipwssg 6956 ctssdccl 7088 creur 8875 eqreznegel 9573 ltxr 9732 icoshftf1o 9948 elfzm11 10047 elfzomelpfzo 10187 nn0ennn 10389 nnesq 10595 rexfiuz 10953 cau4 11080 sumeq2 11322 fisumcom2 11401 fprodcom2fi 11589 dvdsflip 11811 divgcdcoprm0 12055 hashdvds 12175 issgrpv 12645 issgrpn0 12646 mndpropd 12676 ismhm 12685 mhmpropd 12689 grppropd 12724 grpinvcnv 12767 tpspropd 12828 tgss2 12873 lmbr2 13008 txcnmpt 13067 txhmeo 13113 blininf 13218 blres 13228 xmeterval 13229 xmspropd 13271 mspropd 13272 metequiv 13289 xmetxpbl 13302 limcdifap 13425 cbvrald 13823 bj-indeq 13964 |
Copyright terms: Public domain | W3C validator |