| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr4g | GIF version | ||
| Description: More general version of 3bitr4i 212. Useful for converting definitions in a formula. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 3bitr4g.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitr4g.2 | ⊢ (𝜃 ↔ 𝜓) |
| 3bitr4g.3 | ⊢ (𝜏 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| 3bitr4g | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr4g.2 | . . 3 ⊢ (𝜃 ↔ 𝜓) | |
| 2 | 3bitr4g.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | bitrid 192 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
| 4 | 3bitr4g.3 | . 2 ⊢ (𝜏 ↔ 𝜒) | |
| 5 | 3, 4 | bitr4di 198 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bibi1d 233 pm5.32rd 451 orbi1d 793 stbid 834 dcbid 840 pm4.14dc 892 orbididc 956 3orbi123d 1324 3anbi123d 1325 xorbi2d 1400 xorbi1d 1401 nfbidf 1563 drnf1 1757 drnf2 1758 drsb1 1823 sbal2 2049 eubidh 2061 eubid 2062 mobidh 2089 mobid 2090 eqeq1 2213 eqeq2 2216 eleq1w 2267 eleq2w 2268 eleq1 2269 eleq2 2270 cbvabw 2329 eqabdv 2335 nfceqdf 2348 drnfc1 2366 drnfc2 2367 neeq1 2390 neeq2 2391 neleq1 2476 neleq2 2477 dfrex2dc 2498 ralbida 2501 rexbida 2502 ralbidv2 2509 rexbidv2 2510 ralbid2 2511 rexbid2 2512 r19.21t 2582 r19.23t 2614 reubida 2689 rmobida 2694 raleqf 2699 rexeqf 2700 reueq1f 2701 rmoeq1f 2702 cbvraldva2 2746 cbvrexdva2 2747 dfsbcq 3004 sbceqbid 3009 sbcbi2 3053 sbcbid 3060 eqsbc2 3063 sbcabel 3084 sbnfc2 3158 ssconb 3310 uneq1 3324 ineq1 3371 difin2 3439 reuun2 3460 reldisj 3516 undif4 3527 disjssun 3528 sbcssg 3573 eltpg 3683 raltpg 3691 rextpg 3692 r19.12sn 3704 opeq1 3828 opeq2 3829 intmin4 3922 dfiun2g 3968 iindif2m 4004 iinin2m 4005 breq 4056 breq1 4057 breq2 4058 treq 4159 opthg2 4296 poeq1 4359 soeq1 4375 frforeq1 4403 freq1 4404 frforeq2 4405 freq2 4406 frforeq3 4407 weeq1 4416 weeq2 4417 ordeq 4432 limeq 4437 rabxfrd 4529 iunpw 4540 opthprc 4739 releq 4770 sbcrel 4774 eqrel 4777 eqrelrel 4789 xpiindim 4828 brcnvg 4872 brresg 4981 resieq 4983 xpcanm 5136 xpcan2m 5137 dmsnopg 5168 dfco2a 5197 cnvpom 5239 cnvsom 5240 iotaeq 5254 sniota 5276 sbcfung 5309 fneq1 5376 fneq2 5377 feq1 5423 feq2 5424 feq3 5425 sbcfng 5438 sbcfg 5439 f1eq1 5493 f1eq2 5494 f1eq3 5495 foeq1 5511 foeq2 5512 foeq3 5513 f1oeq1 5527 f1oeq2 5528 f1oeq3 5529 fun11iun 5560 mpteqb 5688 dffo3 5745 fmptco 5764 dff13 5855 f1imaeq 5862 f1eqcocnv 5878 fliftcnv 5882 isoeq1 5888 isoeq2 5889 isoeq3 5890 isoeq4 5891 isoeq5 5892 isocnv2 5899 acexmid 5961 fnotovb 6006 mpoeq123 6022 ottposg 6359 dmtpos 6360 smoeq 6394 nnacan 6616 nnmcan 6623 ereq1 6645 ereq2 6646 elecg 6678 ereldm 6683 ixpiinm 6829 enfi 6991 elfi2 7095 fipwssg 7102 ctssdccl 7234 tapeq1 7394 tapeq2 7395 creur 9062 eqreznegel 9765 ltxr 9927 icoshftf1o 10143 elfzm11 10243 elfzomelpfzo 10392 nn0ennn 10610 nnesq 10836 rexfiuz 11385 cau4 11512 sumeq2 11755 fisumcom2 11834 fprodcom2fi 12022 dvdsflip 12247 bitsmod 12352 bitscmp 12354 divgcdcoprm0 12508 hashdvds 12628 4sqlem12 12810 imasaddfnlemg 13231 issgrpv 13321 issgrpn0 13322 mndpropd 13357 ismhm 13378 mhmpropd 13383 issubm2 13390 grppropd 13434 grpinvcnv 13485 conjghm 13697 conjnmzb 13701 ghmpropd 13704 cmnpropd 13716 ablpropd 13717 eqgabl 13751 rngpropd 13802 issrg 13812 ringpropd 13885 crngpropd 13886 opprnzrbg 14032 subrngpropd 14063 resrhm2b 14096 subrgpropd 14100 rhmpropd 14101 opprdomnbg 14121 lmodprop2d 14195 islssm 14204 islssmg 14205 lsspropdg 14278 df2idl2rng 14355 tpspropd 14593 tgss2 14636 lmbr2 14771 txcnmpt 14830 txhmeo 14876 blininf 14981 blres 14991 xmeterval 14992 xmspropd 15034 mspropd 15035 metequiv 15052 xmetxpbl 15065 limcdifap 15219 lgsquadlem1 15639 lgsquadlem2 15640 cbvrald 15894 bj-indeq 16034 |
| Copyright terms: Public domain | W3C validator |