| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr4g | GIF version | ||
| Description: More general version of 3bitr4i 212. Useful for converting definitions in a formula. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 3bitr4g.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitr4g.2 | ⊢ (𝜃 ↔ 𝜓) |
| 3bitr4g.3 | ⊢ (𝜏 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| 3bitr4g | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr4g.2 | . . 3 ⊢ (𝜃 ↔ 𝜓) | |
| 2 | 3bitr4g.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | bitrid 192 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
| 4 | 3bitr4g.3 | . 2 ⊢ (𝜏 ↔ 𝜒) | |
| 5 | 3, 4 | bitr4di 198 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bibi1d 233 pm5.32rd 451 orbi1d 792 stbid 833 dcbid 839 pm4.14dc 891 orbididc 955 3orbi123d 1322 3anbi123d 1323 xorbi2d 1391 xorbi1d 1392 nfbidf 1553 drnf1 1747 drnf2 1748 drsb1 1813 sbal2 2039 eubidh 2051 eubid 2052 mobidh 2079 mobid 2080 eqeq1 2203 eqeq2 2206 eleq1w 2257 eleq2w 2258 eleq1 2259 eleq2 2260 cbvabw 2319 eqabdv 2325 nfceqdf 2338 drnfc1 2356 drnfc2 2357 neeq1 2380 neeq2 2381 neleq1 2466 neleq2 2467 dfrex2dc 2488 ralbida 2491 rexbida 2492 ralbidv2 2499 rexbidv2 2500 ralbid2 2501 rexbid2 2502 r19.21t 2572 r19.23t 2604 reubida 2679 rmobida 2684 raleqf 2689 rexeqf 2690 reueq1f 2691 rmoeq1f 2692 cbvraldva2 2736 cbvrexdva2 2737 dfsbcq 2991 sbceqbid 2996 sbcbi2 3040 sbcbid 3047 eqsbc2 3050 sbcabel 3071 sbnfc2 3145 ssconb 3297 uneq1 3311 ineq1 3358 difin2 3426 reuun2 3447 reldisj 3503 undif4 3514 disjssun 3515 sbcssg 3560 eltpg 3668 raltpg 3676 rextpg 3677 r19.12sn 3689 opeq1 3809 opeq2 3810 intmin4 3903 dfiun2g 3949 iindif2m 3985 iinin2m 3986 breq 4036 breq1 4037 breq2 4038 treq 4138 opthg2 4273 poeq1 4335 soeq1 4351 frforeq1 4379 freq1 4380 frforeq2 4381 freq2 4382 frforeq3 4383 weeq1 4392 weeq2 4393 ordeq 4408 limeq 4413 rabxfrd 4505 iunpw 4516 opthprc 4715 releq 4746 sbcrel 4750 eqrel 4753 eqrelrel 4765 xpiindim 4804 brcnvg 4848 brresg 4955 resieq 4957 xpcanm 5110 xpcan2m 5111 dmsnopg 5142 dfco2a 5171 cnvpom 5213 cnvsom 5214 iotaeq 5228 sniota 5250 sbcfung 5283 fneq1 5347 fneq2 5348 feq1 5393 feq2 5394 feq3 5395 sbcfng 5408 sbcfg 5409 f1eq1 5461 f1eq2 5462 f1eq3 5463 foeq1 5479 foeq2 5480 foeq3 5481 f1oeq1 5495 f1oeq2 5496 f1oeq3 5497 fun11iun 5528 mpteqb 5655 dffo3 5712 fmptco 5731 dff13 5818 f1imaeq 5825 f1eqcocnv 5841 fliftcnv 5845 isoeq1 5851 isoeq2 5852 isoeq3 5853 isoeq4 5854 isoeq5 5855 isocnv2 5862 acexmid 5924 fnotovb 5969 mpoeq123 5985 ottposg 6322 dmtpos 6323 smoeq 6357 nnacan 6579 nnmcan 6586 ereq1 6608 ereq2 6609 elecg 6641 ereldm 6646 ixpiinm 6792 enfi 6943 elfi2 7047 fipwssg 7054 ctssdccl 7186 tapeq1 7337 tapeq2 7338 creur 9005 eqreznegel 9707 ltxr 9869 icoshftf1o 10085 elfzm11 10185 elfzomelpfzo 10326 nn0ennn 10544 nnesq 10770 rexfiuz 11173 cau4 11300 sumeq2 11543 fisumcom2 11622 fprodcom2fi 11810 dvdsflip 12035 bitsmod 12140 bitscmp 12142 divgcdcoprm0 12296 hashdvds 12416 4sqlem12 12598 imasaddfnlemg 13018 issgrpv 13108 issgrpn0 13109 mndpropd 13144 ismhm 13165 mhmpropd 13170 issubm2 13177 grppropd 13221 grpinvcnv 13272 conjghm 13484 conjnmzb 13488 ghmpropd 13491 cmnpropd 13503 ablpropd 13504 eqgabl 13538 rngpropd 13589 issrg 13599 ringpropd 13672 crngpropd 13673 opprnzrbg 13819 subrngpropd 13850 resrhm2b 13883 subrgpropd 13887 rhmpropd 13888 opprdomnbg 13908 lmodprop2d 13982 islssm 13991 islssmg 13992 lsspropdg 14065 df2idl2rng 14142 tpspropd 14380 tgss2 14423 lmbr2 14558 txcnmpt 14617 txhmeo 14663 blininf 14768 blres 14778 xmeterval 14779 xmspropd 14821 mspropd 14822 metequiv 14839 xmetxpbl 14852 limcdifap 15006 lgsquadlem1 15426 lgsquadlem2 15427 cbvrald 15542 bj-indeq 15683 |
| Copyright terms: Public domain | W3C validator |