| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr4g | GIF version | ||
| Description: More general version of 3bitr4i 212. Useful for converting definitions in a formula. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 3bitr4g.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitr4g.2 | ⊢ (𝜃 ↔ 𝜓) |
| 3bitr4g.3 | ⊢ (𝜏 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| 3bitr4g | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr4g.2 | . . 3 ⊢ (𝜃 ↔ 𝜓) | |
| 2 | 3bitr4g.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | bitrid 192 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
| 4 | 3bitr4g.3 | . 2 ⊢ (𝜏 ↔ 𝜒) | |
| 5 | 3, 4 | bitr4di 198 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bibi1d 233 pm5.32rd 451 orbi1d 796 stbid 837 dcbid 843 pm4.14dc 895 orbididc 959 ifpbi123d 998 3orbi123d 1345 3anbi123d 1346 xorbi2d 1422 xorbi1d 1423 nfbidf 1585 drnf1 1779 drnf2 1780 drsb1 1845 sbal2 2071 eubidh 2083 eubid 2084 mobidh 2111 mobid 2112 eqeq1 2236 eqeq2 2239 eleq1w 2290 eleq2w 2291 eleq1 2292 eleq2 2293 cbvabw 2352 eqabdv 2358 nfceqdf 2371 drnfc1 2389 drnfc2 2390 neeq1 2413 neeq2 2414 neleq1 2499 neleq2 2500 dfrex2dc 2521 ralbida 2524 rexbida 2525 ralbidv2 2532 rexbidv2 2533 ralbid2 2534 rexbid2 2535 r19.21t 2605 r19.23t 2638 reubida 2713 rmobida 2719 raleqf 2724 rexeqf 2725 reueq1f 2726 rmoeq1f 2727 cbvraldva2 2772 cbvrexdva2 2773 dfsbcq 3030 sbceqbid 3035 sbcbi2 3079 sbcbid 3086 eqsbc2 3089 sbcabel 3111 sbnfc2 3185 ssconb 3337 uneq1 3351 ineq1 3398 difin2 3466 reuun2 3487 reldisj 3543 undif4 3554 disjssun 3555 sbcssg 3600 eltpg 3711 raltpg 3719 rextpg 3720 r19.12sn 3732 opeq1 3856 opeq2 3857 intmin4 3950 dfiun2g 3996 iindif2m 4032 iinin2m 4033 breq 4084 breq1 4085 breq2 4086 treq 4187 opthg2 4324 poeq1 4389 soeq1 4405 frforeq1 4433 freq1 4434 frforeq2 4435 freq2 4436 frforeq3 4437 weeq1 4446 weeq2 4447 ordeq 4462 limeq 4467 rabxfrd 4559 iunpw 4570 opthprc 4769 releq 4800 sbcrel 4804 eqrel 4807 eqrelrel 4819 xpiindim 4858 brcnvg 4902 brresg 5012 resieq 5014 xpcanm 5167 xpcan2m 5168 dmsnopg 5199 dfco2a 5228 cnvpom 5270 cnvsom 5271 iotaeq 5286 sniota 5308 sbcfung 5341 fneq1 5408 fneq2 5409 feq1 5455 feq2 5456 feq3 5457 sbcfng 5470 sbcfg 5471 f1eq1 5525 f1eq2 5526 f1eq3 5527 foeq1 5543 foeq2 5544 foeq3 5545 f1oeq1 5559 f1oeq2 5560 f1oeq3 5561 fun11iun 5592 mpteqb 5724 dffo3 5781 fmptco 5800 dff13 5891 f1imaeq 5898 f1eqcocnv 5914 fliftcnv 5918 isoeq1 5924 isoeq2 5925 isoeq3 5926 isoeq4 5927 isoeq5 5928 isocnv2 5935 acexmid 5999 fnotovb 6046 mpoeq123 6062 ottposg 6399 dmtpos 6400 smoeq 6434 nnacan 6656 nnmcan 6663 ereq1 6685 ereq2 6686 elecg 6718 ereldm 6723 ixpiinm 6869 enfi 7031 elfi2 7135 fipwssg 7142 ctssdccl 7274 tapeq1 7434 tapeq2 7435 creur 9102 eqreznegel 9805 ltxr 9967 icoshftf1o 10183 elfzm11 10283 elfzomelpfzo 10432 nn0ennn 10650 nnesq 10876 rexfiuz 11495 cau4 11622 sumeq2 11865 fisumcom2 11944 fprodcom2fi 12132 dvdsflip 12357 bitsmod 12462 bitscmp 12464 divgcdcoprm0 12618 hashdvds 12738 4sqlem12 12920 imasaddfnlemg 13342 issgrpv 13432 issgrpn0 13433 mndpropd 13468 ismhm 13489 mhmpropd 13494 issubm2 13501 grppropd 13545 grpinvcnv 13596 conjghm 13808 conjnmzb 13812 ghmpropd 13815 cmnpropd 13827 ablpropd 13828 eqgabl 13862 rngpropd 13913 issrg 13923 ringpropd 13996 crngpropd 13997 opprnzrbg 14143 subrngpropd 14174 resrhm2b 14207 subrgpropd 14211 rhmpropd 14212 opprdomnbg 14232 lmodprop2d 14306 islssm 14315 islssmg 14316 lsspropdg 14389 df2idl2rng 14466 tpspropd 14704 tgss2 14747 lmbr2 14882 txcnmpt 14941 txhmeo 14987 blininf 15092 blres 15102 xmeterval 15103 xmspropd 15145 mspropd 15146 metequiv 15163 xmetxpbl 15176 limcdifap 15330 lgsquadlem1 15750 lgsquadlem2 15751 ushgredgedg 16018 ushgredgedgloop 16020 cbvrald 16110 bj-indeq 16250 |
| Copyright terms: Public domain | W3C validator |