Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3bitr4g | GIF version |
Description: More general version of 3bitr4i 211. Useful for converting definitions in a formula. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
3bitr4g.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3bitr4g.2 | ⊢ (𝜃 ↔ 𝜓) |
3bitr4g.3 | ⊢ (𝜏 ↔ 𝜒) |
Ref | Expression |
---|---|
3bitr4g | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr4g.2 | . . 3 ⊢ (𝜃 ↔ 𝜓) | |
2 | 3bitr4g.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | syl5bb 191 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
4 | 3bitr4g.3 | . 2 ⊢ (𝜏 ↔ 𝜒) | |
5 | 3, 4 | bitr4di 197 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: bibi1d 232 pm5.32rd 447 orbi1d 781 stbid 822 dcbid 828 pm4.14dc 880 orbididc 943 3orbi123d 1301 3anbi123d 1302 xorbi2d 1370 xorbi1d 1371 nfbidf 1527 drnf1 1721 drnf2 1722 drsb1 1787 sbal2 2008 eubidh 2020 eubid 2021 mobidh 2048 mobid 2049 eqeq1 2172 eqeq2 2175 eleq1w 2227 eleq2w 2228 eleq1 2229 eleq2 2230 cbvabw 2289 nfceqdf 2307 drnfc1 2325 drnfc2 2326 neeq1 2349 neeq2 2350 neleq1 2435 neleq2 2436 dfrex2dc 2457 ralbida 2460 rexbida 2461 ralbidv2 2468 rexbidv2 2469 ralbid2 2470 rexbid2 2471 r19.21t 2541 r19.23t 2573 reubida 2647 rmobida 2652 raleqf 2657 rexeqf 2658 reueq1f 2659 rmoeq1f 2660 cbvraldva2 2699 cbvrexdva2 2700 dfsbcq 2953 sbcbi2 3001 sbcbid 3008 eqsbc2 3011 sbcabel 3032 sbnfc2 3105 ssconb 3255 uneq1 3269 ineq1 3316 difin2 3384 reuun2 3405 reldisj 3460 undif4 3471 disjssun 3472 sbcssg 3518 eltpg 3621 raltpg 3629 rextpg 3630 r19.12sn 3642 opeq1 3758 opeq2 3759 intmin4 3852 dfiun2g 3898 iindif2m 3933 iinin2m 3934 breq 3984 breq1 3985 breq2 3986 treq 4086 opthg2 4217 poeq1 4277 soeq1 4293 frforeq1 4321 freq1 4322 frforeq2 4323 freq2 4324 frforeq3 4325 weeq1 4334 weeq2 4335 ordeq 4350 limeq 4355 rabxfrd 4447 iunpw 4458 opthprc 4655 releq 4686 sbcrel 4690 eqrel 4693 eqrelrel 4705 xpiindim 4741 brcnvg 4785 brresg 4892 resieq 4894 xpcanm 5043 xpcan2m 5044 dmsnopg 5075 dfco2a 5104 cnvpom 5146 cnvsom 5147 iotaeq 5161 sniota 5180 sbcfung 5212 fneq1 5276 fneq2 5277 feq1 5320 feq2 5321 feq3 5322 sbcfng 5335 sbcfg 5336 f1eq1 5388 f1eq2 5389 f1eq3 5390 foeq1 5406 foeq2 5407 foeq3 5408 f1oeq1 5421 f1oeq2 5422 f1oeq3 5423 fun11iun 5453 mpteqb 5576 dffo3 5632 fmptco 5651 dff13 5736 f1imaeq 5743 f1eqcocnv 5759 fliftcnv 5763 isoeq1 5769 isoeq2 5770 isoeq3 5771 isoeq4 5772 isoeq5 5773 isocnv2 5780 acexmid 5841 fnotovb 5885 mpoeq123 5901 ottposg 6223 dmtpos 6224 smoeq 6258 nnacan 6480 nnmcan 6487 ereq1 6508 ereq2 6509 elecg 6539 ereldm 6544 ixpiinm 6690 enfi 6839 elfi2 6937 fipwssg 6944 ctssdccl 7076 creur 8854 eqreznegel 9552 ltxr 9711 icoshftf1o 9927 elfzm11 10026 elfzomelpfzo 10166 nn0ennn 10368 nnesq 10574 rexfiuz 10931 cau4 11058 sumeq2 11300 fisumcom2 11379 fprodcom2fi 11567 dvdsflip 11789 divgcdcoprm0 12033 hashdvds 12153 issgrpv 12622 issgrpn0 12623 tpspropd 12684 tgss2 12729 lmbr2 12864 txcnmpt 12923 txhmeo 12969 blininf 13074 blres 13084 xmeterval 13085 xmspropd 13127 mspropd 13128 metequiv 13145 xmetxpbl 13158 limcdifap 13281 cbvrald 13679 bj-indeq 13821 |
Copyright terms: Public domain | W3C validator |