Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3bitr4g | GIF version |
Description: More general version of 3bitr4i 212. Useful for converting definitions in a formula. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
3bitr4g.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3bitr4g.2 | ⊢ (𝜃 ↔ 𝜓) |
3bitr4g.3 | ⊢ (𝜏 ↔ 𝜒) |
Ref | Expression |
---|---|
3bitr4g | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr4g.2 | . . 3 ⊢ (𝜃 ↔ 𝜓) | |
2 | 3bitr4g.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | bitrid 192 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
4 | 3bitr4g.3 | . 2 ⊢ (𝜏 ↔ 𝜒) | |
5 | 3, 4 | bitr4di 198 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: bibi1d 233 pm5.32rd 451 orbi1d 791 stbid 832 dcbid 838 pm4.14dc 890 orbididc 953 3orbi123d 1311 3anbi123d 1312 xorbi2d 1380 xorbi1d 1381 nfbidf 1537 drnf1 1731 drnf2 1732 drsb1 1797 sbal2 2018 eubidh 2030 eubid 2031 mobidh 2058 mobid 2059 eqeq1 2182 eqeq2 2185 eleq1w 2236 eleq2w 2237 eleq1 2238 eleq2 2239 cbvabw 2298 nfceqdf 2316 drnfc1 2334 drnfc2 2335 neeq1 2358 neeq2 2359 neleq1 2444 neleq2 2445 dfrex2dc 2466 ralbida 2469 rexbida 2470 ralbidv2 2477 rexbidv2 2478 ralbid2 2479 rexbid2 2480 r19.21t 2550 r19.23t 2582 reubida 2656 rmobida 2661 raleqf 2666 rexeqf 2667 reueq1f 2668 rmoeq1f 2669 cbvraldva2 2708 cbvrexdva2 2709 dfsbcq 2962 sbceqbid 2967 sbcbi2 3011 sbcbid 3018 eqsbc2 3021 sbcabel 3042 sbnfc2 3115 ssconb 3266 uneq1 3280 ineq1 3327 difin2 3395 reuun2 3416 reldisj 3472 undif4 3483 disjssun 3484 sbcssg 3530 eltpg 3634 raltpg 3642 rextpg 3643 r19.12sn 3655 opeq1 3774 opeq2 3775 intmin4 3868 dfiun2g 3914 iindif2m 3949 iinin2m 3950 breq 4000 breq1 4001 breq2 4002 treq 4102 opthg2 4233 poeq1 4293 soeq1 4309 frforeq1 4337 freq1 4338 frforeq2 4339 freq2 4340 frforeq3 4341 weeq1 4350 weeq2 4351 ordeq 4366 limeq 4371 rabxfrd 4463 iunpw 4474 opthprc 4671 releq 4702 sbcrel 4706 eqrel 4709 eqrelrel 4721 xpiindim 4757 brcnvg 4801 brresg 4908 resieq 4910 xpcanm 5060 xpcan2m 5061 dmsnopg 5092 dfco2a 5121 cnvpom 5163 cnvsom 5164 iotaeq 5178 sniota 5199 sbcfung 5232 fneq1 5296 fneq2 5297 feq1 5340 feq2 5341 feq3 5342 sbcfng 5355 sbcfg 5356 f1eq1 5408 f1eq2 5409 f1eq3 5410 foeq1 5426 foeq2 5427 foeq3 5428 f1oeq1 5441 f1oeq2 5442 f1oeq3 5443 fun11iun 5474 mpteqb 5598 dffo3 5655 fmptco 5674 dff13 5759 f1imaeq 5766 f1eqcocnv 5782 fliftcnv 5786 isoeq1 5792 isoeq2 5793 isoeq3 5794 isoeq4 5795 isoeq5 5796 isocnv2 5803 acexmid 5864 fnotovb 5908 mpoeq123 5924 ottposg 6246 dmtpos 6247 smoeq 6281 nnacan 6503 nnmcan 6510 ereq1 6532 ereq2 6533 elecg 6563 ereldm 6568 ixpiinm 6714 enfi 6863 elfi2 6961 fipwssg 6968 ctssdccl 7100 creur 8889 eqreznegel 9587 ltxr 9746 icoshftf1o 9962 elfzm11 10061 elfzomelpfzo 10201 nn0ennn 10403 nnesq 10609 rexfiuz 10966 cau4 11093 sumeq2 11335 fisumcom2 11414 fprodcom2fi 11602 dvdsflip 11824 divgcdcoprm0 12068 hashdvds 12188 issgrpv 12676 issgrpn0 12677 mndpropd 12707 ismhm 12716 mhmpropd 12720 grppropd 12755 grpinvcnv 12799 cmnpropd 12897 ablpropd 12898 issrg 12945 ringpropd 13013 crngpropd 13014 tpspropd 13105 tgss2 13150 lmbr2 13285 txcnmpt 13344 txhmeo 13390 blininf 13495 blres 13505 xmeterval 13506 xmspropd 13548 mspropd 13549 metequiv 13566 xmetxpbl 13579 limcdifap 13702 cbvrald 14100 bj-indeq 14241 |
Copyright terms: Public domain | W3C validator |