![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3bitr4g | GIF version |
Description: More general version of 3bitr4i 212. Useful for converting definitions in a formula. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
3bitr4g.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3bitr4g.2 | ⊢ (𝜃 ↔ 𝜓) |
3bitr4g.3 | ⊢ (𝜏 ↔ 𝜒) |
Ref | Expression |
---|---|
3bitr4g | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr4g.2 | . . 3 ⊢ (𝜃 ↔ 𝜓) | |
2 | 3bitr4g.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | bitrid 192 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
4 | 3bitr4g.3 | . 2 ⊢ (𝜏 ↔ 𝜒) | |
5 | 3, 4 | bitr4di 198 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: bibi1d 233 pm5.32rd 451 orbi1d 791 stbid 832 dcbid 838 pm4.14dc 890 orbididc 953 3orbi123d 1311 3anbi123d 1312 xorbi2d 1380 xorbi1d 1381 nfbidf 1539 drnf1 1733 drnf2 1734 drsb1 1799 sbal2 2020 eubidh 2032 eubid 2033 mobidh 2060 mobid 2061 eqeq1 2184 eqeq2 2187 eleq1w 2238 eleq2w 2239 eleq1 2240 eleq2 2241 cbvabw 2300 nfceqdf 2318 drnfc1 2336 drnfc2 2337 neeq1 2360 neeq2 2361 neleq1 2446 neleq2 2447 dfrex2dc 2468 ralbida 2471 rexbida 2472 ralbidv2 2479 rexbidv2 2480 ralbid2 2481 rexbid2 2482 r19.21t 2552 r19.23t 2584 reubida 2659 rmobida 2664 raleqf 2669 rexeqf 2670 reueq1f 2671 rmoeq1f 2672 cbvraldva2 2712 cbvrexdva2 2713 dfsbcq 2966 sbceqbid 2971 sbcbi2 3015 sbcbid 3022 eqsbc2 3025 sbcabel 3046 sbnfc2 3119 ssconb 3270 uneq1 3284 ineq1 3331 difin2 3399 reuun2 3420 reldisj 3476 undif4 3487 disjssun 3488 sbcssg 3534 eltpg 3639 raltpg 3647 rextpg 3648 r19.12sn 3660 opeq1 3780 opeq2 3781 intmin4 3874 dfiun2g 3920 iindif2m 3956 iinin2m 3957 breq 4007 breq1 4008 breq2 4009 treq 4109 opthg2 4241 poeq1 4301 soeq1 4317 frforeq1 4345 freq1 4346 frforeq2 4347 freq2 4348 frforeq3 4349 weeq1 4358 weeq2 4359 ordeq 4374 limeq 4379 rabxfrd 4471 iunpw 4482 opthprc 4679 releq 4710 sbcrel 4714 eqrel 4717 eqrelrel 4729 xpiindim 4766 brcnvg 4810 brresg 4917 resieq 4919 xpcanm 5070 xpcan2m 5071 dmsnopg 5102 dfco2a 5131 cnvpom 5173 cnvsom 5174 iotaeq 5188 sniota 5209 sbcfung 5242 fneq1 5306 fneq2 5307 feq1 5350 feq2 5351 feq3 5352 sbcfng 5365 sbcfg 5366 f1eq1 5418 f1eq2 5419 f1eq3 5420 foeq1 5436 foeq2 5437 foeq3 5438 f1oeq1 5451 f1oeq2 5452 f1oeq3 5453 fun11iun 5484 mpteqb 5608 dffo3 5665 fmptco 5684 dff13 5771 f1imaeq 5778 f1eqcocnv 5794 fliftcnv 5798 isoeq1 5804 isoeq2 5805 isoeq3 5806 isoeq4 5807 isoeq5 5808 isocnv2 5815 acexmid 5876 fnotovb 5920 mpoeq123 5936 ottposg 6258 dmtpos 6259 smoeq 6293 nnacan 6515 nnmcan 6522 ereq1 6544 ereq2 6545 elecg 6575 ereldm 6580 ixpiinm 6726 enfi 6875 elfi2 6973 fipwssg 6980 ctssdccl 7112 tapeq1 7253 tapeq2 7254 creur 8918 eqreznegel 9616 ltxr 9777 icoshftf1o 9993 elfzm11 10093 elfzomelpfzo 10233 nn0ennn 10435 nnesq 10642 rexfiuz 11000 cau4 11127 sumeq2 11369 fisumcom2 11448 fprodcom2fi 11636 dvdsflip 11859 divgcdcoprm0 12103 hashdvds 12223 imasaddfnlemg 12740 issgrpv 12815 issgrpn0 12816 mndpropd 12846 ismhm 12858 mhmpropd 12862 issubm2 12869 grppropd 12898 grpinvcnv 12943 cmnpropd 13103 ablpropd 13104 issrg 13153 ringpropd 13222 crngpropd 13223 subrgpropd 13374 lmodprop2d 13443 islssm 13450 tpspropd 13575 tgss2 13618 lmbr2 13753 txcnmpt 13812 txhmeo 13858 blininf 13963 blres 13973 xmeterval 13974 xmspropd 14016 mspropd 14017 metequiv 14034 xmetxpbl 14047 limcdifap 14170 cbvrald 14579 bj-indeq 14720 |
Copyright terms: Public domain | W3C validator |