| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr4g | GIF version | ||
| Description: More general version of 3bitr4i 212. Useful for converting definitions in a formula. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 3bitr4g.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitr4g.2 | ⊢ (𝜃 ↔ 𝜓) |
| 3bitr4g.3 | ⊢ (𝜏 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| 3bitr4g | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr4g.2 | . . 3 ⊢ (𝜃 ↔ 𝜓) | |
| 2 | 3bitr4g.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | bitrid 192 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
| 4 | 3bitr4g.3 | . 2 ⊢ (𝜏 ↔ 𝜒) | |
| 5 | 3, 4 | bitr4di 198 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bibi1d 233 pm5.32rd 451 orbi1d 793 stbid 834 dcbid 840 pm4.14dc 892 orbididc 956 3orbi123d 1324 3anbi123d 1325 xorbi2d 1400 xorbi1d 1401 nfbidf 1562 drnf1 1756 drnf2 1757 drsb1 1822 sbal2 2048 eubidh 2060 eubid 2061 mobidh 2088 mobid 2089 eqeq1 2212 eqeq2 2215 eleq1w 2266 eleq2w 2267 eleq1 2268 eleq2 2269 cbvabw 2328 eqabdv 2334 nfceqdf 2347 drnfc1 2365 drnfc2 2366 neeq1 2389 neeq2 2390 neleq1 2475 neleq2 2476 dfrex2dc 2497 ralbida 2500 rexbida 2501 ralbidv2 2508 rexbidv2 2509 ralbid2 2510 rexbid2 2511 r19.21t 2581 r19.23t 2613 reubida 2688 rmobida 2693 raleqf 2698 rexeqf 2699 reueq1f 2700 rmoeq1f 2701 cbvraldva2 2745 cbvrexdva2 2746 dfsbcq 3000 sbceqbid 3005 sbcbi2 3049 sbcbid 3056 eqsbc2 3059 sbcabel 3080 sbnfc2 3154 ssconb 3306 uneq1 3320 ineq1 3367 difin2 3435 reuun2 3456 reldisj 3512 undif4 3523 disjssun 3524 sbcssg 3569 eltpg 3678 raltpg 3686 rextpg 3687 r19.12sn 3699 opeq1 3819 opeq2 3820 intmin4 3913 dfiun2g 3959 iindif2m 3995 iinin2m 3996 breq 4046 breq1 4047 breq2 4048 treq 4148 opthg2 4283 poeq1 4346 soeq1 4362 frforeq1 4390 freq1 4391 frforeq2 4392 freq2 4393 frforeq3 4394 weeq1 4403 weeq2 4404 ordeq 4419 limeq 4424 rabxfrd 4516 iunpw 4527 opthprc 4726 releq 4757 sbcrel 4761 eqrel 4764 eqrelrel 4776 xpiindim 4815 brcnvg 4859 brresg 4967 resieq 4969 xpcanm 5122 xpcan2m 5123 dmsnopg 5154 dfco2a 5183 cnvpom 5225 cnvsom 5226 iotaeq 5240 sniota 5262 sbcfung 5295 fneq1 5362 fneq2 5363 feq1 5408 feq2 5409 feq3 5410 sbcfng 5423 sbcfg 5424 f1eq1 5476 f1eq2 5477 f1eq3 5478 foeq1 5494 foeq2 5495 foeq3 5496 f1oeq1 5510 f1oeq2 5511 f1oeq3 5512 fun11iun 5543 mpteqb 5670 dffo3 5727 fmptco 5746 dff13 5837 f1imaeq 5844 f1eqcocnv 5860 fliftcnv 5864 isoeq1 5870 isoeq2 5871 isoeq3 5872 isoeq4 5873 isoeq5 5874 isocnv2 5881 acexmid 5943 fnotovb 5988 mpoeq123 6004 ottposg 6341 dmtpos 6342 smoeq 6376 nnacan 6598 nnmcan 6605 ereq1 6627 ereq2 6628 elecg 6660 ereldm 6665 ixpiinm 6811 enfi 6970 elfi2 7074 fipwssg 7081 ctssdccl 7213 tapeq1 7364 tapeq2 7365 creur 9032 eqreznegel 9735 ltxr 9897 icoshftf1o 10113 elfzm11 10213 elfzomelpfzo 10360 nn0ennn 10578 nnesq 10804 rexfiuz 11300 cau4 11427 sumeq2 11670 fisumcom2 11749 fprodcom2fi 11937 dvdsflip 12162 bitsmod 12267 bitscmp 12269 divgcdcoprm0 12423 hashdvds 12543 4sqlem12 12725 imasaddfnlemg 13146 issgrpv 13236 issgrpn0 13237 mndpropd 13272 ismhm 13293 mhmpropd 13298 issubm2 13305 grppropd 13349 grpinvcnv 13400 conjghm 13612 conjnmzb 13616 ghmpropd 13619 cmnpropd 13631 ablpropd 13632 eqgabl 13666 rngpropd 13717 issrg 13727 ringpropd 13800 crngpropd 13801 opprnzrbg 13947 subrngpropd 13978 resrhm2b 14011 subrgpropd 14015 rhmpropd 14016 opprdomnbg 14036 lmodprop2d 14110 islssm 14119 islssmg 14120 lsspropdg 14193 df2idl2rng 14270 tpspropd 14508 tgss2 14551 lmbr2 14686 txcnmpt 14745 txhmeo 14791 blininf 14896 blres 14906 xmeterval 14907 xmspropd 14949 mspropd 14950 metequiv 14967 xmetxpbl 14980 limcdifap 15134 lgsquadlem1 15554 lgsquadlem2 15555 cbvrald 15724 bj-indeq 15865 |
| Copyright terms: Public domain | W3C validator |