![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simp23 | GIF version |
Description: Simplification of doubly triple conjunction. (Contributed by NM, 17-Nov-2011.) |
Ref | Expression |
---|---|
simp23 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 999 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜃) | |
2 | 1 | 3ad2ant2 1019 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 978 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 980 |
This theorem is referenced by: simpl23 1077 simpr23 1086 simp123 1131 simp223 1140 simp323 1149 funtpg 5269 |
Copyright terms: Public domain | W3C validator |