Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simp23 | GIF version |
Description: Simplification of doubly triple conjunction. (Contributed by NM, 17-Nov-2011.) |
Ref | Expression |
---|---|
simp23 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 989 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜃) | |
2 | 1 | 3ad2ant2 1009 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: simpl23 1067 simpr23 1076 simp123 1121 simp223 1130 simp323 1139 funtpg 5239 |
Copyright terms: Public domain | W3C validator |