ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simp23 GIF version

Theorem simp23 976
Description: Simplification of doubly triple conjunction. (Contributed by NM, 17-Nov-2011.)
Assertion
Ref Expression
simp23 ((𝜑 ∧ (𝜓𝜒𝜃) ∧ 𝜏) → 𝜃)

Proof of Theorem simp23
StepHypRef Expression
1 simp3 943 . 2 ((𝜓𝜒𝜃) → 𝜃)
213ad2ant2 963 1 ((𝜑 ∧ (𝜓𝜒𝜃) ∧ 𝜏) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 922
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106
This theorem depends on definitions:  df-bi 115  df-3an 924
This theorem is referenced by:  simpl23  1021  simpr23  1030  simp123  1075  simp223  1084  simp323  1093  funtpg  5030
  Copyright terms: Public domain W3C validator