ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simp22 GIF version

Theorem simp22 1033
Description: Simplification of doubly triple conjunction. (Contributed by NM, 17-Nov-2011.)
Assertion
Ref Expression
simp22 ((𝜑 ∧ (𝜓𝜒𝜃) ∧ 𝜏) → 𝜒)

Proof of Theorem simp22
StepHypRef Expression
1 simp2 1000 . 2 ((𝜓𝜒𝜃) → 𝜒)
213ad2ant2 1021 1 ((𝜑 ∧ (𝜓𝜒𝜃) ∧ 𝜏) → 𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  simpl22  1078  simpr22  1087  simp122  1132  simp222  1141  simp322  1150  prarloclem5  7560  mulgdirlem  13223
  Copyright terms: Public domain W3C validator