ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funtpg GIF version

Theorem funtpg 5305
Description: A set of three pairs is a function if their first members are different. (Contributed by Alexander van der Vekens, 5-Dec-2017.)
Assertion
Ref Expression
funtpg (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → Fun {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩})

Proof of Theorem funtpg
StepHypRef Expression
1 3simpa 996 . . . 4 ((𝑋𝑈𝑌𝑉𝑍𝑊) → (𝑋𝑈𝑌𝑉))
2 3simpa 996 . . . 4 ((𝐴𝐹𝐵𝐺𝐶𝐻) → (𝐴𝐹𝐵𝐺))
3 simp1 999 . . . 4 ((𝑋𝑌𝑋𝑍𝑌𝑍) → 𝑋𝑌)
4 funprg 5304 . . . 4 (((𝑋𝑈𝑌𝑉) ∧ (𝐴𝐹𝐵𝐺) ∧ 𝑋𝑌) → Fun {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩})
51, 2, 3, 4syl3an 1291 . . 3 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → Fun {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩})
6 simp13 1031 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝑍𝑊)
7 simp23 1034 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝐶𝐻)
8 funsng 5300 . . . 4 ((𝑍𝑊𝐶𝐻) → Fun {⟨𝑍, 𝐶⟩})
96, 7, 8syl2anc 411 . . 3 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → Fun {⟨𝑍, 𝐶⟩})
1023ad2ant2 1021 . . . . . 6 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (𝐴𝐹𝐵𝐺))
11 dmpropg 5138 . . . . . 6 ((𝐴𝐹𝐵𝐺) → dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} = {𝑋, 𝑌})
1210, 11syl 14 . . . . 5 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} = {𝑋, 𝑌})
13 dmsnopg 5137 . . . . . 6 (𝐶𝐻 → dom {⟨𝑍, 𝐶⟩} = {𝑍})
147, 13syl 14 . . . . 5 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → dom {⟨𝑍, 𝐶⟩} = {𝑍})
1512, 14ineq12d 3361 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∩ dom {⟨𝑍, 𝐶⟩}) = ({𝑋, 𝑌} ∩ {𝑍}))
16 elpri 3641 . . . . . . . 8 (𝑍 ∈ {𝑋, 𝑌} → (𝑍 = 𝑋𝑍 = 𝑌))
17 nner 2368 . . . . . . . . . . . 12 (𝑋 = 𝑍 → ¬ 𝑋𝑍)
1817eqcoms 2196 . . . . . . . . . . 11 (𝑍 = 𝑋 → ¬ 𝑋𝑍)
19 3mix2 1169 . . . . . . . . . . 11 𝑋𝑍 → (¬ 𝑋𝑌 ∨ ¬ 𝑋𝑍 ∨ ¬ 𝑌𝑍))
2018, 19syl 14 . . . . . . . . . 10 (𝑍 = 𝑋 → (¬ 𝑋𝑌 ∨ ¬ 𝑋𝑍 ∨ ¬ 𝑌𝑍))
21 nner 2368 . . . . . . . . . . . 12 (𝑌 = 𝑍 → ¬ 𝑌𝑍)
2221eqcoms 2196 . . . . . . . . . . 11 (𝑍 = 𝑌 → ¬ 𝑌𝑍)
23 3mix3 1170 . . . . . . . . . . 11 𝑌𝑍 → (¬ 𝑋𝑌 ∨ ¬ 𝑋𝑍 ∨ ¬ 𝑌𝑍))
2422, 23syl 14 . . . . . . . . . 10 (𝑍 = 𝑌 → (¬ 𝑋𝑌 ∨ ¬ 𝑋𝑍 ∨ ¬ 𝑌𝑍))
2520, 24jaoi 717 . . . . . . . . 9 ((𝑍 = 𝑋𝑍 = 𝑌) → (¬ 𝑋𝑌 ∨ ¬ 𝑋𝑍 ∨ ¬ 𝑌𝑍))
26 3ianorr 1320 . . . . . . . . 9 ((¬ 𝑋𝑌 ∨ ¬ 𝑋𝑍 ∨ ¬ 𝑌𝑍) → ¬ (𝑋𝑌𝑋𝑍𝑌𝑍))
2725, 26syl 14 . . . . . . . 8 ((𝑍 = 𝑋𝑍 = 𝑌) → ¬ (𝑋𝑌𝑋𝑍𝑌𝑍))
2816, 27syl 14 . . . . . . 7 (𝑍 ∈ {𝑋, 𝑌} → ¬ (𝑋𝑌𝑋𝑍𝑌𝑍))
2928con2i 628 . . . . . 6 ((𝑋𝑌𝑋𝑍𝑌𝑍) → ¬ 𝑍 ∈ {𝑋, 𝑌})
30 disjsn 3680 . . . . . 6 (({𝑋, 𝑌} ∩ {𝑍}) = ∅ ↔ ¬ 𝑍 ∈ {𝑋, 𝑌})
3129, 30sylibr 134 . . . . 5 ((𝑋𝑌𝑋𝑍𝑌𝑍) → ({𝑋, 𝑌} ∩ {𝑍}) = ∅)
32313ad2ant3 1022 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ({𝑋, 𝑌} ∩ {𝑍}) = ∅)
3315, 32eqtrd 2226 . . 3 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∩ dom {⟨𝑍, 𝐶⟩}) = ∅)
34 funun 5298 . . 3 (((Fun {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∧ Fun {⟨𝑍, 𝐶⟩}) ∧ (dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∩ dom {⟨𝑍, 𝐶⟩}) = ∅) → Fun ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩}))
355, 9, 33, 34syl21anc 1248 . 2 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → Fun ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩}))
36 df-tp 3626 . . 3 {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩} = ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩})
3736funeqi 5275 . 2 (Fun {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩} ↔ Fun ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩}))
3835, 37sylibr 134 1 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → Fun {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩})
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  w3o 979  w3a 980   = wceq 1364  wcel 2164  wne 2364  cun 3151  cin 3152  c0 3446  {csn 3618  {cpr 3619  {ctp 3620  cop 3621  dom cdm 4659  Fun wfun 5248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-tp 3626  df-op 3627  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-fun 5256
This theorem is referenced by:  fntpg  5310
  Copyright terms: Public domain W3C validator