ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funtpg GIF version

Theorem funtpg 5233
Description: A set of three pairs is a function if their first members are different. (Contributed by Alexander van der Vekens, 5-Dec-2017.)
Assertion
Ref Expression
funtpg (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → Fun {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩})

Proof of Theorem funtpg
StepHypRef Expression
1 3simpa 983 . . . 4 ((𝑋𝑈𝑌𝑉𝑍𝑊) → (𝑋𝑈𝑌𝑉))
2 3simpa 983 . . . 4 ((𝐴𝐹𝐵𝐺𝐶𝐻) → (𝐴𝐹𝐵𝐺))
3 simp1 986 . . . 4 ((𝑋𝑌𝑋𝑍𝑌𝑍) → 𝑋𝑌)
4 funprg 5232 . . . 4 (((𝑋𝑈𝑌𝑉) ∧ (𝐴𝐹𝐵𝐺) ∧ 𝑋𝑌) → Fun {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩})
51, 2, 3, 4syl3an 1269 . . 3 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → Fun {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩})
6 simp13 1018 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝑍𝑊)
7 simp23 1021 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝐶𝐻)
8 funsng 5228 . . . 4 ((𝑍𝑊𝐶𝐻) → Fun {⟨𝑍, 𝐶⟩})
96, 7, 8syl2anc 409 . . 3 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → Fun {⟨𝑍, 𝐶⟩})
1023ad2ant2 1008 . . . . . 6 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (𝐴𝐹𝐵𝐺))
11 dmpropg 5070 . . . . . 6 ((𝐴𝐹𝐵𝐺) → dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} = {𝑋, 𝑌})
1210, 11syl 14 . . . . 5 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} = {𝑋, 𝑌})
13 dmsnopg 5069 . . . . . 6 (𝐶𝐻 → dom {⟨𝑍, 𝐶⟩} = {𝑍})
147, 13syl 14 . . . . 5 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → dom {⟨𝑍, 𝐶⟩} = {𝑍})
1512, 14ineq12d 3319 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∩ dom {⟨𝑍, 𝐶⟩}) = ({𝑋, 𝑌} ∩ {𝑍}))
16 elpri 3593 . . . . . . . 8 (𝑍 ∈ {𝑋, 𝑌} → (𝑍 = 𝑋𝑍 = 𝑌))
17 nner 2338 . . . . . . . . . . . 12 (𝑋 = 𝑍 → ¬ 𝑋𝑍)
1817eqcoms 2167 . . . . . . . . . . 11 (𝑍 = 𝑋 → ¬ 𝑋𝑍)
19 3mix2 1156 . . . . . . . . . . 11 𝑋𝑍 → (¬ 𝑋𝑌 ∨ ¬ 𝑋𝑍 ∨ ¬ 𝑌𝑍))
2018, 19syl 14 . . . . . . . . . 10 (𝑍 = 𝑋 → (¬ 𝑋𝑌 ∨ ¬ 𝑋𝑍 ∨ ¬ 𝑌𝑍))
21 nner 2338 . . . . . . . . . . . 12 (𝑌 = 𝑍 → ¬ 𝑌𝑍)
2221eqcoms 2167 . . . . . . . . . . 11 (𝑍 = 𝑌 → ¬ 𝑌𝑍)
23 3mix3 1157 . . . . . . . . . . 11 𝑌𝑍 → (¬ 𝑋𝑌 ∨ ¬ 𝑋𝑍 ∨ ¬ 𝑌𝑍))
2422, 23syl 14 . . . . . . . . . 10 (𝑍 = 𝑌 → (¬ 𝑋𝑌 ∨ ¬ 𝑋𝑍 ∨ ¬ 𝑌𝑍))
2520, 24jaoi 706 . . . . . . . . 9 ((𝑍 = 𝑋𝑍 = 𝑌) → (¬ 𝑋𝑌 ∨ ¬ 𝑋𝑍 ∨ ¬ 𝑌𝑍))
26 3ianorr 1298 . . . . . . . . 9 ((¬ 𝑋𝑌 ∨ ¬ 𝑋𝑍 ∨ ¬ 𝑌𝑍) → ¬ (𝑋𝑌𝑋𝑍𝑌𝑍))
2725, 26syl 14 . . . . . . . 8 ((𝑍 = 𝑋𝑍 = 𝑌) → ¬ (𝑋𝑌𝑋𝑍𝑌𝑍))
2816, 27syl 14 . . . . . . 7 (𝑍 ∈ {𝑋, 𝑌} → ¬ (𝑋𝑌𝑋𝑍𝑌𝑍))
2928con2i 617 . . . . . 6 ((𝑋𝑌𝑋𝑍𝑌𝑍) → ¬ 𝑍 ∈ {𝑋, 𝑌})
30 disjsn 3632 . . . . . 6 (({𝑋, 𝑌} ∩ {𝑍}) = ∅ ↔ ¬ 𝑍 ∈ {𝑋, 𝑌})
3129, 30sylibr 133 . . . . 5 ((𝑋𝑌𝑋𝑍𝑌𝑍) → ({𝑋, 𝑌} ∩ {𝑍}) = ∅)
32313ad2ant3 1009 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ({𝑋, 𝑌} ∩ {𝑍}) = ∅)
3315, 32eqtrd 2197 . . 3 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∩ dom {⟨𝑍, 𝐶⟩}) = ∅)
34 funun 5226 . . 3 (((Fun {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∧ Fun {⟨𝑍, 𝐶⟩}) ∧ (dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∩ dom {⟨𝑍, 𝐶⟩}) = ∅) → Fun ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩}))
355, 9, 33, 34syl21anc 1226 . 2 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → Fun ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩}))
36 df-tp 3578 . . 3 {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩} = ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩})
3736funeqi 5203 . 2 (Fun {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩} ↔ Fun ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩}))
3835, 37sylibr 133 1 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → Fun {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩})
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 698  w3o 966  w3a 967   = wceq 1342  wcel 2135  wne 2334  cun 3109  cin 3110  c0 3404  {csn 3570  {cpr 3571  {ctp 3572  cop 3573  dom cdm 4598  Fun wfun 5176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181
This theorem depends on definitions:  df-bi 116  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-v 2723  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-pw 3555  df-sn 3576  df-pr 3577  df-tp 3578  df-op 3579  df-br 3977  df-opab 4038  df-id 4265  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-fun 5184
This theorem is referenced by:  fntpg  5238
  Copyright terms: Public domain W3C validator