ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funtpg GIF version

Theorem funtpg 5368
Description: A set of three pairs is a function if their first members are different. (Contributed by Alexander van der Vekens, 5-Dec-2017.)
Assertion
Ref Expression
funtpg (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → Fun {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩})

Proof of Theorem funtpg
StepHypRef Expression
1 3simpa 1018 . . . 4 ((𝑋𝑈𝑌𝑉𝑍𝑊) → (𝑋𝑈𝑌𝑉))
2 3simpa 1018 . . . 4 ((𝐴𝐹𝐵𝐺𝐶𝐻) → (𝐴𝐹𝐵𝐺))
3 simp1 1021 . . . 4 ((𝑋𝑌𝑋𝑍𝑌𝑍) → 𝑋𝑌)
4 funprg 5367 . . . 4 (((𝑋𝑈𝑌𝑉) ∧ (𝐴𝐹𝐵𝐺) ∧ 𝑋𝑌) → Fun {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩})
51, 2, 3, 4syl3an 1313 . . 3 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → Fun {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩})
6 simp13 1053 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝑍𝑊)
7 simp23 1056 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝐶𝐻)
8 funsng 5363 . . . 4 ((𝑍𝑊𝐶𝐻) → Fun {⟨𝑍, 𝐶⟩})
96, 7, 8syl2anc 411 . . 3 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → Fun {⟨𝑍, 𝐶⟩})
1023ad2ant2 1043 . . . . . 6 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (𝐴𝐹𝐵𝐺))
11 dmpropg 5197 . . . . . 6 ((𝐴𝐹𝐵𝐺) → dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} = {𝑋, 𝑌})
1210, 11syl 14 . . . . 5 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} = {𝑋, 𝑌})
13 dmsnopg 5196 . . . . . 6 (𝐶𝐻 → dom {⟨𝑍, 𝐶⟩} = {𝑍})
147, 13syl 14 . . . . 5 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → dom {⟨𝑍, 𝐶⟩} = {𝑍})
1512, 14ineq12d 3406 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∩ dom {⟨𝑍, 𝐶⟩}) = ({𝑋, 𝑌} ∩ {𝑍}))
16 elpri 3689 . . . . . . . 8 (𝑍 ∈ {𝑋, 𝑌} → (𝑍 = 𝑋𝑍 = 𝑌))
17 nner 2404 . . . . . . . . . . . 12 (𝑋 = 𝑍 → ¬ 𝑋𝑍)
1817eqcoms 2232 . . . . . . . . . . 11 (𝑍 = 𝑋 → ¬ 𝑋𝑍)
19 3mix2 1191 . . . . . . . . . . 11 𝑋𝑍 → (¬ 𝑋𝑌 ∨ ¬ 𝑋𝑍 ∨ ¬ 𝑌𝑍))
2018, 19syl 14 . . . . . . . . . 10 (𝑍 = 𝑋 → (¬ 𝑋𝑌 ∨ ¬ 𝑋𝑍 ∨ ¬ 𝑌𝑍))
21 nner 2404 . . . . . . . . . . . 12 (𝑌 = 𝑍 → ¬ 𝑌𝑍)
2221eqcoms 2232 . . . . . . . . . . 11 (𝑍 = 𝑌 → ¬ 𝑌𝑍)
23 3mix3 1192 . . . . . . . . . . 11 𝑌𝑍 → (¬ 𝑋𝑌 ∨ ¬ 𝑋𝑍 ∨ ¬ 𝑌𝑍))
2422, 23syl 14 . . . . . . . . . 10 (𝑍 = 𝑌 → (¬ 𝑋𝑌 ∨ ¬ 𝑋𝑍 ∨ ¬ 𝑌𝑍))
2520, 24jaoi 721 . . . . . . . . 9 ((𝑍 = 𝑋𝑍 = 𝑌) → (¬ 𝑋𝑌 ∨ ¬ 𝑋𝑍 ∨ ¬ 𝑌𝑍))
26 3ianorr 1343 . . . . . . . . 9 ((¬ 𝑋𝑌 ∨ ¬ 𝑋𝑍 ∨ ¬ 𝑌𝑍) → ¬ (𝑋𝑌𝑋𝑍𝑌𝑍))
2725, 26syl 14 . . . . . . . 8 ((𝑍 = 𝑋𝑍 = 𝑌) → ¬ (𝑋𝑌𝑋𝑍𝑌𝑍))
2816, 27syl 14 . . . . . . 7 (𝑍 ∈ {𝑋, 𝑌} → ¬ (𝑋𝑌𝑋𝑍𝑌𝑍))
2928con2i 630 . . . . . 6 ((𝑋𝑌𝑋𝑍𝑌𝑍) → ¬ 𝑍 ∈ {𝑋, 𝑌})
30 disjsn 3728 . . . . . 6 (({𝑋, 𝑌} ∩ {𝑍}) = ∅ ↔ ¬ 𝑍 ∈ {𝑋, 𝑌})
3129, 30sylibr 134 . . . . 5 ((𝑋𝑌𝑋𝑍𝑌𝑍) → ({𝑋, 𝑌} ∩ {𝑍}) = ∅)
32313ad2ant3 1044 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ({𝑋, 𝑌} ∩ {𝑍}) = ∅)
3315, 32eqtrd 2262 . . 3 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∩ dom {⟨𝑍, 𝐶⟩}) = ∅)
34 funun 5358 . . 3 (((Fun {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∧ Fun {⟨𝑍, 𝐶⟩}) ∧ (dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∩ dom {⟨𝑍, 𝐶⟩}) = ∅) → Fun ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩}))
355, 9, 33, 34syl21anc 1270 . 2 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → Fun ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩}))
36 df-tp 3674 . . 3 {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩} = ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩})
3736funeqi 5335 . 2 (Fun {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩} ↔ Fun ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩}))
3835, 37sylibr 134 1 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → Fun {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩})
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 713  w3o 1001  w3a 1002   = wceq 1395  wcel 2200  wne 2400  cun 3195  cin 3196  c0 3491  {csn 3666  {cpr 3667  {ctp 3668  cop 3669  dom cdm 4716  Fun wfun 5308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-br 4083  df-opab 4145  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-fun 5316
This theorem is referenced by:  fntpg  5373
  Copyright terms: Public domain W3C validator