| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpll1 | GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simpll1 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1024 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜑) | |
| 2 | 1 | adantr 276 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: fidifsnen 7040 ordiso2 7210 ctssdc 7288 addlocpr 7731 xltadd1 10080 nn0ltexp2 10939 hashun 11035 fimaxq 11057 xrmaxltsup 11777 dvdslegcd 12493 lcmledvds 12600 divgcdcoprm0 12631 rpexp 12683 qexpz 12883 dfgrp3mlem 13639 rhmdvdsr 14147 rnglidlmcl 14452 iscnp4 14900 cnconst2 14915 blssps 15109 blss 15110 metcnp 15194 addcncntoplem 15243 cdivcncfap 15286 lgsfvalg 15692 lgsmod 15713 lgsdir 15722 lgsne0 15725 |
| Copyright terms: Public domain | W3C validator |