ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simpll1 GIF version

Theorem simpll1 1036
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simpll1 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜑)

Proof of Theorem simpll1
StepHypRef Expression
1 simpl1 1000 . 2 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜑)
21adantr 276 1 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-3an 980
This theorem is referenced by:  fidifsnen  6869  ordiso2  7033  ctssdc  7111  addlocpr  7534  xltadd1  9875  nn0ltexp2  10688  hashun  10784  fimaxq  10806  xrmaxltsup  11265  dvdslegcd  11964  lcmledvds  12069  divgcdcoprm0  12100  rpexp  12152  qexpz  12349  dfgrp3mlem  12967  iscnp4  13688  cnconst2  13703  blssps  13897  blss  13898  metcnp  13982  addcncntoplem  14021  cdivcncfap  14057  lgsfvalg  14376  lgsmod  14397  lgsdir  14406  lgsne0  14409
  Copyright terms: Public domain W3C validator