| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > simpll1 | GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) | 
| Ref | Expression | 
|---|---|
| simpll1 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpl1 1002 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜑) | |
| 2 | 1 | adantr 276 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜑) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: fidifsnen 6931 ordiso2 7101 ctssdc 7179 addlocpr 7603 xltadd1 9951 nn0ltexp2 10801 hashun 10897 fimaxq 10919 xrmaxltsup 11423 dvdslegcd 12131 lcmledvds 12238 divgcdcoprm0 12269 rpexp 12321 qexpz 12521 dfgrp3mlem 13230 rhmdvdsr 13731 rnglidlmcl 14036 iscnp4 14454 cnconst2 14469 blssps 14663 blss 14664 metcnp 14748 addcncntoplem 14797 cdivcncfap 14840 lgsfvalg 15246 lgsmod 15267 lgsdir 15276 lgsne0 15279 | 
| Copyright terms: Public domain | W3C validator |