| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpll1 | GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simpll1 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1002 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜑) | |
| 2 | 1 | adantr 276 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: fidifsnen 6940 ordiso2 7110 ctssdc 7188 addlocpr 7620 xltadd1 9968 nn0ltexp2 10818 hashun 10914 fimaxq 10936 xrmaxltsup 11440 dvdslegcd 12156 lcmledvds 12263 divgcdcoprm0 12294 rpexp 12346 qexpz 12546 dfgrp3mlem 13300 rhmdvdsr 13807 rnglidlmcl 14112 iscnp4 14538 cnconst2 14553 blssps 14747 blss 14748 metcnp 14832 addcncntoplem 14881 cdivcncfap 14924 lgsfvalg 15330 lgsmod 15351 lgsdir 15360 lgsne0 15363 |
| Copyright terms: Public domain | W3C validator |