| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpll1 | GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simpll1 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1002 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜑) | |
| 2 | 1 | adantr 276 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: fidifsnen 6940 ordiso2 7110 ctssdc 7188 addlocpr 7622 xltadd1 9970 nn0ltexp2 10820 hashun 10916 fimaxq 10938 xrmaxltsup 11442 dvdslegcd 12158 lcmledvds 12265 divgcdcoprm0 12296 rpexp 12348 qexpz 12548 dfgrp3mlem 13302 rhmdvdsr 13809 rnglidlmcl 14114 iscnp4 14562 cnconst2 14577 blssps 14771 blss 14772 metcnp 14856 addcncntoplem 14905 cdivcncfap 14948 lgsfvalg 15354 lgsmod 15375 lgsdir 15384 lgsne0 15387 |
| Copyright terms: Public domain | W3C validator |