ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simpll1 GIF version

Theorem simpll1 1038
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simpll1 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜑)

Proof of Theorem simpll1
StepHypRef Expression
1 simpl1 1002 . 2 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜑)
21adantr 276 1 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  fidifsnen  6931  ordiso2  7101  ctssdc  7179  addlocpr  7603  xltadd1  9951  nn0ltexp2  10801  hashun  10897  fimaxq  10919  xrmaxltsup  11423  dvdslegcd  12131  lcmledvds  12238  divgcdcoprm0  12269  rpexp  12321  qexpz  12521  dfgrp3mlem  13230  rhmdvdsr  13731  rnglidlmcl  14036  iscnp4  14454  cnconst2  14469  blssps  14663  blss  14664  metcnp  14748  addcncntoplem  14797  cdivcncfap  14840  lgsfvalg  15246  lgsmod  15267  lgsdir  15276  lgsne0  15279
  Copyright terms: Public domain W3C validator