ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simpll1 GIF version

Theorem simpll1 1039
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simpll1 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜑)

Proof of Theorem simpll1
StepHypRef Expression
1 simpl1 1003 . 2 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜑)
21adantr 276 1 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-3an 983
This theorem is referenced by:  fidifsnen  6979  ordiso2  7149  ctssdc  7227  addlocpr  7662  xltadd1  10011  nn0ltexp2  10867  hashun  10963  fimaxq  10985  xrmaxltsup  11619  dvdslegcd  12335  lcmledvds  12442  divgcdcoprm0  12473  rpexp  12525  qexpz  12725  dfgrp3mlem  13480  rhmdvdsr  13987  rnglidlmcl  14292  iscnp4  14740  cnconst2  14755  blssps  14949  blss  14950  metcnp  15034  addcncntoplem  15083  cdivcncfap  15126  lgsfvalg  15532  lgsmod  15553  lgsdir  15562  lgsne0  15565
  Copyright terms: Public domain W3C validator