![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simpll1 | GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simpll1 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1002 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜑) | |
2 | 1 | adantr 276 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: fidifsnen 6928 ordiso2 7096 ctssdc 7174 addlocpr 7598 xltadd1 9945 nn0ltexp2 10783 hashun 10879 fimaxq 10901 xrmaxltsup 11404 dvdslegcd 12104 lcmledvds 12211 divgcdcoprm0 12242 rpexp 12294 qexpz 12493 dfgrp3mlem 13173 rhmdvdsr 13674 rnglidlmcl 13979 iscnp4 14397 cnconst2 14412 blssps 14606 blss 14607 metcnp 14691 addcncntoplem 14740 cdivcncfap 14783 lgsfvalg 15162 lgsmod 15183 lgsdir 15192 lgsne0 15195 |
Copyright terms: Public domain | W3C validator |