ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simpll1 GIF version

Theorem simpll1 1060
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simpll1 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜑)

Proof of Theorem simpll1
StepHypRef Expression
1 simpl1 1024 . 2 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜑)
21adantr 276 1 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-3an 1004
This theorem is referenced by:  fidifsnen  7020  ordiso2  7190  ctssdc  7268  addlocpr  7711  xltadd1  10060  nn0ltexp2  10918  hashun  11014  fimaxq  11036  xrmaxltsup  11755  dvdslegcd  12471  lcmledvds  12578  divgcdcoprm0  12609  rpexp  12661  qexpz  12861  dfgrp3mlem  13617  rhmdvdsr  14124  rnglidlmcl  14429  iscnp4  14877  cnconst2  14892  blssps  15086  blss  15087  metcnp  15171  addcncntoplem  15220  cdivcncfap  15263  lgsfvalg  15669  lgsmod  15690  lgsdir  15699  lgsne0  15702
  Copyright terms: Public domain W3C validator