![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simpll1 | GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simpll1 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1002 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜑) | |
2 | 1 | adantr 276 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: fidifsnen 6926 ordiso2 7094 ctssdc 7172 addlocpr 7596 xltadd1 9942 nn0ltexp2 10780 hashun 10876 fimaxq 10898 xrmaxltsup 11401 dvdslegcd 12101 lcmledvds 12208 divgcdcoprm0 12239 rpexp 12291 qexpz 12490 dfgrp3mlem 13170 rhmdvdsr 13671 rnglidlmcl 13976 iscnp4 14386 cnconst2 14401 blssps 14595 blss 14596 metcnp 14680 addcncntoplem 14719 cdivcncfap 14758 lgsfvalg 15121 lgsmod 15142 lgsdir 15151 lgsne0 15154 |
Copyright terms: Public domain | W3C validator |