| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpll1 | GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simpll1 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1024 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜑) | |
| 2 | 1 | adantr 276 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: fidifsnen 7020 ordiso2 7190 ctssdc 7268 addlocpr 7711 xltadd1 10060 nn0ltexp2 10918 hashun 11014 fimaxq 11036 xrmaxltsup 11755 dvdslegcd 12471 lcmledvds 12578 divgcdcoprm0 12609 rpexp 12661 qexpz 12861 dfgrp3mlem 13617 rhmdvdsr 14124 rnglidlmcl 14429 iscnp4 14877 cnconst2 14892 blssps 15086 blss 15087 metcnp 15171 addcncntoplem 15220 cdivcncfap 15263 lgsfvalg 15669 lgsmod 15690 lgsdir 15699 lgsne0 15702 |
| Copyright terms: Public domain | W3C validator |