ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simpll1 GIF version

Theorem simpll1 1060
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simpll1 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜑)

Proof of Theorem simpll1
StepHypRef Expression
1 simpl1 1024 . 2 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜑)
21adantr 276 1 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-3an 1004
This theorem is referenced by:  fidifsnen  7040  ordiso2  7210  ctssdc  7288  addlocpr  7731  xltadd1  10080  nn0ltexp2  10939  hashun  11035  fimaxq  11057  xrmaxltsup  11777  dvdslegcd  12493  lcmledvds  12600  divgcdcoprm0  12631  rpexp  12683  qexpz  12883  dfgrp3mlem  13639  rhmdvdsr  14147  rnglidlmcl  14452  iscnp4  14900  cnconst2  14915  blssps  15109  blss  15110  metcnp  15194  addcncntoplem  15243  cdivcncfap  15286  lgsfvalg  15692  lgsmod  15713  lgsdir  15722  lgsne0  15725
  Copyright terms: Public domain W3C validator