| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpll1 | GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simpll1 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1003 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜑) | |
| 2 | 1 | adantr 276 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: fidifsnen 6979 ordiso2 7149 ctssdc 7227 addlocpr 7662 xltadd1 10011 nn0ltexp2 10867 hashun 10963 fimaxq 10985 xrmaxltsup 11619 dvdslegcd 12335 lcmledvds 12442 divgcdcoprm0 12473 rpexp 12525 qexpz 12725 dfgrp3mlem 13480 rhmdvdsr 13987 rnglidlmcl 14292 iscnp4 14740 cnconst2 14755 blssps 14949 blss 14950 metcnp 15034 addcncntoplem 15083 cdivcncfap 15126 lgsfvalg 15532 lgsmod 15553 lgsdir 15562 lgsne0 15565 |
| Copyright terms: Public domain | W3C validator |