Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simpll1 | GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simpll1 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 990 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜑) | |
2 | 1 | adantr 274 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: fidifsnen 6832 ordiso2 6996 ctssdc 7074 addlocpr 7473 xltadd1 9808 nn0ltexp2 10619 hashun 10714 fimaxq 10736 xrmaxltsup 11195 dvdslegcd 11893 lcmledvds 11998 divgcdcoprm0 12029 rpexp 12081 qexpz 12278 iscnp4 12818 cnconst2 12833 blssps 13027 blss 13028 metcnp 13112 addcncntoplem 13151 cdivcncfap 13187 lgsfvalg 13506 lgsmod 13527 lgsdir 13536 lgsne0 13539 |
Copyright terms: Public domain | W3C validator |