| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > srgrz | GIF version | ||
| Description: The zero of a semiring is a right-absorbing element. (Contributed by Thierry Arnoux, 1-Apr-2018.) |
| Ref | Expression |
|---|---|
| srgz.b | ⊢ 𝐵 = (Base‘𝑅) |
| srgz.t | ⊢ · = (.r‘𝑅) |
| srgz.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| srgrz | ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → (𝑋 · 0 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srgz.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | eqid 2206 | . . . . . . 7 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 3 | eqid 2206 | . . . . . . 7 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 4 | srgz.t | . . . . . . 7 ⊢ · = (.r‘𝑅) | |
| 5 | srgz.z | . . . . . . 7 ⊢ 0 = (0g‘𝑅) | |
| 6 | 1, 2, 3, 4, 5 | issrg 13802 | . . . . . 6 ⊢ (𝑅 ∈ SRing ↔ (𝑅 ∈ CMnd ∧ (mulGrp‘𝑅) ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦(+g‘𝑅)𝑧)) = ((𝑥 · 𝑦)(+g‘𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g‘𝑅)(𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 )))) |
| 7 | 6 | simp3bi 1017 | . . . . 5 ⊢ (𝑅 ∈ SRing → ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦(+g‘𝑅)𝑧)) = ((𝑥 · 𝑦)(+g‘𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g‘𝑅)(𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 ))) |
| 8 | 7 | r19.21bi 2595 | . . . 4 ⊢ ((𝑅 ∈ SRing ∧ 𝑥 ∈ 𝐵) → (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦(+g‘𝑅)𝑧)) = ((𝑥 · 𝑦)(+g‘𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g‘𝑅)(𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 ))) |
| 9 | 8 | simprrd 532 | . . 3 ⊢ ((𝑅 ∈ SRing ∧ 𝑥 ∈ 𝐵) → (𝑥 · 0 ) = 0 ) |
| 10 | 9 | ralrimiva 2580 | . 2 ⊢ (𝑅 ∈ SRing → ∀𝑥 ∈ 𝐵 (𝑥 · 0 ) = 0 ) |
| 11 | oveq1 5964 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 · 0 ) = (𝑋 · 0 )) | |
| 12 | 11 | eqeq1d 2215 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑥 · 0 ) = 0 ↔ (𝑋 · 0 ) = 0 )) |
| 13 | 12 | rspcv 2877 | . 2 ⊢ (𝑋 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 (𝑥 · 0 ) = 0 → (𝑋 · 0 ) = 0 )) |
| 14 | 10, 13 | mpan9 281 | 1 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → (𝑋 · 0 ) = 0 ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ∀wral 2485 ‘cfv 5280 (class class class)co 5957 Basecbs 12907 +gcplusg 12984 .rcmulr 12985 0gc0g 13163 Mndcmnd 13323 CMndccmn 13695 mulGrpcmgp 13757 SRingcsrg 13800 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-cnex 8036 ax-resscn 8037 ax-1re 8039 ax-addrcl 8042 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-iota 5241 df-fun 5282 df-fn 5283 df-fv 5288 df-riota 5912 df-ov 5960 df-inn 9057 df-2 9115 df-3 9116 df-ndx 12910 df-slot 12911 df-base 12913 df-plusg 12997 df-mulr 12998 df-0g 13165 df-srg 13801 |
| This theorem is referenced by: srgisid 13823 srglmhm 13830 |
| Copyright terms: Public domain | W3C validator |