ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srgrz GIF version

Theorem srgrz 13616
Description: The zero of a semiring is a right-absorbing element. (Contributed by Thierry Arnoux, 1-Apr-2018.)
Hypotheses
Ref Expression
srgz.b 𝐵 = (Base‘𝑅)
srgz.t · = (.r𝑅)
srgz.z 0 = (0g𝑅)
Assertion
Ref Expression
srgrz ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (𝑋 · 0 ) = 0 )

Proof of Theorem srgrz
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 srgz.b . . . . . . 7 𝐵 = (Base‘𝑅)
2 eqid 2196 . . . . . . 7 (mulGrp‘𝑅) = (mulGrp‘𝑅)
3 eqid 2196 . . . . . . 7 (+g𝑅) = (+g𝑅)
4 srgz.t . . . . . . 7 · = (.r𝑅)
5 srgz.z . . . . . . 7 0 = (0g𝑅)
61, 2, 3, 4, 5issrg 13597 . . . . . 6 (𝑅 ∈ SRing ↔ (𝑅 ∈ CMnd ∧ (mulGrp‘𝑅) ∈ Mnd ∧ ∀𝑥𝐵 (∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦(+g𝑅)𝑧)) = ((𝑥 · 𝑦)(+g𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g𝑅)(𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 ))))
76simp3bi 1016 . . . . 5 (𝑅 ∈ SRing → ∀𝑥𝐵 (∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦(+g𝑅)𝑧)) = ((𝑥 · 𝑦)(+g𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g𝑅)(𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 )))
87r19.21bi 2585 . . . 4 ((𝑅 ∈ SRing ∧ 𝑥𝐵) → (∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦(+g𝑅)𝑧)) = ((𝑥 · 𝑦)(+g𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g𝑅)(𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 )))
98simprrd 532 . . 3 ((𝑅 ∈ SRing ∧ 𝑥𝐵) → (𝑥 · 0 ) = 0 )
109ralrimiva 2570 . 2 (𝑅 ∈ SRing → ∀𝑥𝐵 (𝑥 · 0 ) = 0 )
11 oveq1 5932 . . . 4 (𝑥 = 𝑋 → (𝑥 · 0 ) = (𝑋 · 0 ))
1211eqeq1d 2205 . . 3 (𝑥 = 𝑋 → ((𝑥 · 0 ) = 0 ↔ (𝑋 · 0 ) = 0 ))
1312rspcv 2864 . 2 (𝑋𝐵 → (∀𝑥𝐵 (𝑥 · 0 ) = 0 → (𝑋 · 0 ) = 0 ))
1410, 13mpan9 281 1 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (𝑋 · 0 ) = 0 )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  wral 2475  cfv 5259  (class class class)co 5925  Basecbs 12703  +gcplusg 12780  .rcmulr 12781  0gc0g 12958  Mndcmnd 13118  CMndccmn 13490  mulGrpcmgp 13552  SRingcsrg 13595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-riota 5880  df-ov 5928  df-inn 9008  df-2 9066  df-3 9067  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-mulr 12794  df-0g 12960  df-srg 13596
This theorem is referenced by:  srgisid  13618  srglmhm  13625
  Copyright terms: Public domain W3C validator