![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lmodvs1 | GIF version |
Description: Scalar product with the ring unity. (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lmodvs1.v | ⊢ 𝑉 = (Base‘𝑊) |
lmodvs1.f | ⊢ 𝐹 = (Scalar‘𝑊) |
lmodvs1.s | ⊢ · = ( ·𝑠 ‘𝑊) |
lmodvs1.u | ⊢ 1 = (1r‘𝐹) |
Ref | Expression |
---|---|
lmodvs1 | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ( 1 · 𝑋) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 109 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑊 ∈ LMod) | |
2 | lmodvs1.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
3 | eqid 2189 | . . . 4 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
4 | lmodvs1.u | . . . 4 ⊢ 1 = (1r‘𝐹) | |
5 | 2, 3, 4 | lmod1cl 13648 | . . 3 ⊢ (𝑊 ∈ LMod → 1 ∈ (Base‘𝐹)) |
6 | 5 | adantr 276 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 1 ∈ (Base‘𝐹)) |
7 | simpr 110 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) | |
8 | lmodvs1.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
9 | eqid 2189 | . . . 4 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
10 | lmodvs1.s | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
11 | eqid 2189 | . . . 4 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
12 | eqid 2189 | . . . 4 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
13 | 8, 9, 10, 2, 3, 11, 12, 4 | lmodlema 13625 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ ( 1 ∈ (Base‘𝐹) ∧ 1 ∈ (Base‘𝐹)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ((( 1 · 𝑋) ∈ 𝑉 ∧ ( 1 · (𝑋(+g‘𝑊)𝑋)) = (( 1 · 𝑋)(+g‘𝑊)( 1 · 𝑋)) ∧ (( 1 (+g‘𝐹) 1 ) · 𝑋) = (( 1 · 𝑋)(+g‘𝑊)( 1 · 𝑋))) ∧ ((( 1 (.r‘𝐹) 1 ) · 𝑋) = ( 1 · ( 1 · 𝑋)) ∧ ( 1 · 𝑋) = 𝑋))) |
14 | 13 | simprrd 532 | . 2 ⊢ ((𝑊 ∈ LMod ∧ ( 1 ∈ (Base‘𝐹) ∧ 1 ∈ (Base‘𝐹)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ( 1 · 𝑋) = 𝑋) |
15 | 1, 6, 6, 7, 7, 14 | syl122anc 1258 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ( 1 · 𝑋) = 𝑋) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∈ wcel 2160 ‘cfv 5235 (class class class)co 5897 Basecbs 12515 +gcplusg 12592 .rcmulr 12593 Scalarcsca 12595 ·𝑠 cvsca 12596 1rcur 13330 LModclmod 13620 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-cnex 7933 ax-resscn 7934 ax-1cn 7935 ax-1re 7936 ax-icn 7937 ax-addcl 7938 ax-addrcl 7939 ax-mulcl 7940 ax-addcom 7942 ax-addass 7944 ax-i2m1 7947 ax-0lt1 7948 ax-0id 7950 ax-rnegex 7951 ax-pre-ltirr 7954 ax-pre-ltadd 7958 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-fv 5243 df-riota 5852 df-ov 5900 df-oprab 5901 df-mpo 5902 df-pnf 8025 df-mnf 8026 df-ltxr 8028 df-inn 8951 df-2 9009 df-3 9010 df-4 9011 df-5 9012 df-6 9013 df-ndx 12518 df-slot 12519 df-base 12521 df-sets 12522 df-plusg 12605 df-mulr 12606 df-sca 12608 df-vsca 12609 df-0g 12766 df-mgm 12835 df-sgrp 12880 df-mnd 12893 df-mgp 13292 df-ur 13331 df-ring 13369 df-lmod 13622 |
This theorem is referenced by: lmodfopne 13659 lmodvneg1 13663 lmodcom 13666 lssvacl 13698 islss3 13712 lspsn 13749 |
Copyright terms: Public domain | W3C validator |