Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl2imc | GIF version |
Description: A commuted version of syl2im 38. Implication-only version of syl2anr 288. (Contributed by BJ, 20-Oct-2021.) |
Ref | Expression |
---|---|
syl2im.1 | ⊢ (𝜑 → 𝜓) |
syl2im.2 | ⊢ (𝜒 → 𝜃) |
syl2im.3 | ⊢ (𝜓 → (𝜃 → 𝜏)) |
Ref | Expression |
---|---|
syl2imc | ⊢ (𝜒 → (𝜑 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2im.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | syl2im.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
3 | syl2im.3 | . . 3 ⊢ (𝜓 → (𝜃 → 𝜏)) | |
4 | 1, 2, 3 | syl2im 38 | . 2 ⊢ (𝜑 → (𝜒 → 𝜏)) |
5 | 4 | com12 30 | 1 ⊢ (𝜒 → (𝜑 → 𝜏)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: cnptopco 13016 |
Copyright terms: Public domain | W3C validator |