![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl2im | GIF version |
Description: Replace two antecedents. Implication-only version of syl2an 289. (Contributed by Wolf Lammen, 14-May-2013.) |
Ref | Expression |
---|---|
syl2im.1 | ⊢ (𝜑 → 𝜓) |
syl2im.2 | ⊢ (𝜒 → 𝜃) |
syl2im.3 | ⊢ (𝜓 → (𝜃 → 𝜏)) |
Ref | Expression |
---|---|
syl2im | ⊢ (𝜑 → (𝜒 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2im.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl2im.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
3 | syl2im.3 | . . 3 ⊢ (𝜓 → (𝜃 → 𝜏)) | |
4 | 2, 3 | syl5 32 | . 2 ⊢ (𝜓 → (𝜒 → 𝜏)) |
5 | 1, 4 | syl 14 | 1 ⊢ (𝜑 → (𝜒 → 𝜏)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: syl2imc 39 sylc 62 bi3ant 224 pm3.12dc 960 pm3.13dc 961 nfrimi 1536 abnex 4478 vtoclr 4707 funopg 5288 xpider 6660 rerecapb 8862 ixxssixx 9968 difelfzle 10200 txcnp 14439 bj-inf2vnlem1 15462 |
Copyright terms: Public domain | W3C validator |