ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl2im GIF version

Theorem syl2im 38
Description: Replace two antecedents. Implication-only version of syl2an 289. (Contributed by Wolf Lammen, 14-May-2013.)
Hypotheses
Ref Expression
syl2im.1 (𝜑𝜓)
syl2im.2 (𝜒𝜃)
syl2im.3 (𝜓 → (𝜃𝜏))
Assertion
Ref Expression
syl2im (𝜑 → (𝜒𝜏))

Proof of Theorem syl2im
StepHypRef Expression
1 syl2im.1 . 2 (𝜑𝜓)
2 syl2im.2 . . 3 (𝜒𝜃)
3 syl2im.3 . . 3 (𝜓 → (𝜃𝜏))
42, 3syl5 32 . 2 (𝜓 → (𝜒𝜏))
51, 4syl 14 1 (𝜑 → (𝜒𝜏))
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  syl2imc  39  sylc  62  bi3ant  224  pm3.12dc  964  pm3.13dc  965  nfrimi  1571  abnex  4538  vtoclr  4767  funopg  5352  xpider  6761  rerecapb  8998  ixxssixx  10106  difelfzle  10338  txcnp  14953  uspgr2wlkeqi  16088  bj-inf2vnlem1  16357
  Copyright terms: Public domain W3C validator