| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl2im | GIF version | ||
| Description: Replace two antecedents. Implication-only version of syl2an 289. (Contributed by Wolf Lammen, 14-May-2013.) |
| Ref | Expression |
|---|---|
| syl2im.1 | ⊢ (𝜑 → 𝜓) |
| syl2im.2 | ⊢ (𝜒 → 𝜃) |
| syl2im.3 | ⊢ (𝜓 → (𝜃 → 𝜏)) |
| Ref | Expression |
|---|---|
| syl2im | ⊢ (𝜑 → (𝜒 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2im.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl2im.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
| 3 | syl2im.3 | . . 3 ⊢ (𝜓 → (𝜃 → 𝜏)) | |
| 4 | 2, 3 | syl5 32 | . 2 ⊢ (𝜓 → (𝜒 → 𝜏)) |
| 5 | 1, 4 | syl 14 | 1 ⊢ (𝜑 → (𝜒 → 𝜏)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: syl2imc 39 sylc 62 bi3ant 224 pm3.12dc 964 pm3.13dc 965 nfrimi 1571 abnex 4538 vtoclr 4767 funopg 5352 xpider 6761 rerecapb 8998 ixxssixx 10106 difelfzle 10338 txcnp 14953 uspgr2wlkeqi 16088 bj-inf2vnlem1 16357 |
| Copyright terms: Public domain | W3C validator |