| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm2.27 | GIF version | ||
| Description: This theorem, called "Assertion," can be thought of as closed form of modus ponens ax-mp 5. Theorem *2.27 of [WhiteheadRussell] p. 104. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| pm2.27 | ⊢ (𝜑 → ((𝜑 → 𝜓) → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜓)) | |
| 2 | 1 | com12 30 | 1 ⊢ (𝜑 → ((𝜑 → 𝜓) → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: pm2.43 53 com23 78 biimt 241 pm3.35 347 pm3.2im 640 jcn 655 pm2.65 663 annimim 690 condcOLD 858 pm2.26dc 911 ax10o 1741 issref 5087 fundif 5341 acexmidlem2 5971 findcard2 7019 findcard2s 7020 xpfi 7062 exmidontriim 7375 pcmptcl 12831 txlm 14918 bj-inf2vnlem1 16243 bj-findis 16252 |
| Copyright terms: Public domain | W3C validator |