ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.27 GIF version

Theorem pm2.27 40
Description: This theorem, called "Assertion," can be thought of as closed form of modus ponens ax-mp 5. Theorem *2.27 of [WhiteheadRussell] p. 104. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
pm2.27 (𝜑 → ((𝜑𝜓) → 𝜓))

Proof of Theorem pm2.27
StepHypRef Expression
1 id 19 . 2 ((𝜑𝜓) → (𝜑𝜓))
21com12 30 1 (𝜑 → ((𝜑𝜓) → 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  pm2.43  53  com23  78  biimt  241  pm3.35  347  pm3.2im  640  jcn  655  pm2.65  663  annimim  690  condcOLD  859  pm2.26dc  912  ax10o  1761  issref  5111  fundif  5365  acexmidlem2  6004  findcard2  7059  findcard2s  7060  xpfi  7102  exmidontriim  7415  pcmptcl  12873  txlm  14961  bj-inf2vnlem1  16357  bj-findis  16366
  Copyright terms: Public domain W3C validator