ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.27 GIF version

Theorem pm2.27 40
Description: This theorem, called "Assertion," can be thought of as closed form of modus ponens ax-mp 5. Theorem *2.27 of [WhiteheadRussell] p. 104. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
pm2.27 (𝜑 → ((𝜑𝜓) → 𝜓))

Proof of Theorem pm2.27
StepHypRef Expression
1 id 19 . 2 ((𝜑𝜓) → (𝜑𝜓))
21com12 30 1 (𝜑 → ((𝜑𝜓) → 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  pm2.43  53  com23  78  biimt  241  pm3.35  347  pm3.2im  640  jcn  655  pm2.65  663  annimim  690  condcOLD  858  pm2.26dc  911  ax10o  1741  issref  5087  fundif  5341  acexmidlem2  5971  findcard2  7019  findcard2s  7020  xpfi  7062  exmidontriim  7375  pcmptcl  12831  txlm  14918  bj-inf2vnlem1  16243  bj-findis  16252
  Copyright terms: Public domain W3C validator