ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnptopco GIF version

Theorem cnptopco 12763
Description: The composition of a function 𝐹 continuous at 𝑃 with a function continuous at (𝐹𝑃) is continuous at 𝑃. Proposition 2 of [BourbakiTop1] p. I.9. (Contributed by FL, 16-Nov-2006.) (Proof shortened by Mario Carneiro, 27-Dec-2014.)
Assertion
Ref Expression
cnptopco (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) → (𝐺𝐹) ∈ ((𝐽 CnP 𝐿)‘𝑃))

Proof of Theorem cnptopco
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl2 990 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) → 𝐾 ∈ Top)
2 toptopon2 12558 . . . . 5 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
31, 2sylib 121 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) → 𝐾 ∈ (TopOn‘ 𝐾))
4 simpl3 991 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) → 𝐿 ∈ Top)
5 toptopon2 12558 . . . . 5 (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOn‘ 𝐿))
64, 5sylib 121 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) → 𝐿 ∈ (TopOn‘ 𝐿))
7 simprr 522 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) → 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))
8 cnpf2 12748 . . . 4 ((𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝐿 ∈ (TopOn‘ 𝐿) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) → 𝐺: 𝐾 𝐿)
93, 6, 7, 8syl3anc 1227 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) → 𝐺: 𝐾 𝐿)
10 simpl1 989 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) → 𝐽 ∈ Top)
11 toptopon2 12558 . . . . 5 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
1210, 11sylib 121 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) → 𝐽 ∈ (TopOn‘ 𝐽))
13 simprl 521 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))
14 cnpf2 12748 . . . 4 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹: 𝐽 𝐾)
1512, 3, 13, 14syl3anc 1227 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) → 𝐹: 𝐽 𝐾)
16 fco 5347 . . 3 ((𝐺: 𝐾 𝐿𝐹: 𝐽 𝐾) → (𝐺𝐹): 𝐽 𝐿)
179, 15, 16syl2anc 409 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) → (𝐺𝐹): 𝐽 𝐿)
183adantr 274 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) → 𝐾 ∈ (TopOn‘ 𝐾))
196adantr 274 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) → 𝐿 ∈ (TopOn‘ 𝐿))
20 cnprcl2k 12747 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑃 𝐽)
2112, 1, 13, 20syl3anc 1227 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) → 𝑃 𝐽)
2215, 21ffvelrnd 5615 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) → (𝐹𝑃) ∈ 𝐾)
2322adantr 274 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) → (𝐹𝑃) ∈ 𝐾)
247adantr 274 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) → 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))
25 simprl 521 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) → 𝑧𝐿)
26 fvco3 5551 . . . . . . . . 9 ((𝐹: 𝐽 𝐾𝑃 𝐽) → ((𝐺𝐹)‘𝑃) = (𝐺‘(𝐹𝑃)))
2715, 21, 26syl2anc 409 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) → ((𝐺𝐹)‘𝑃) = (𝐺‘(𝐹𝑃)))
2827adantr 274 . . . . . . 7 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) → ((𝐺𝐹)‘𝑃) = (𝐺‘(𝐹𝑃)))
29 simprr 522 . . . . . . 7 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) → ((𝐺𝐹)‘𝑃) ∈ 𝑧)
3028, 29eqeltrrd 2242 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) → (𝐺‘(𝐹𝑃)) ∈ 𝑧)
31 icnpimaex 12752 . . . . . 6 (((𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝐿 ∈ (TopOn‘ 𝐿) ∧ (𝐹𝑃) ∈ 𝐾) ∧ (𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)) ∧ 𝑧𝐿 ∧ (𝐺‘(𝐹𝑃)) ∈ 𝑧)) → ∃𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))
3218, 19, 23, 24, 25, 30, 31syl33anc 1242 . . . . 5 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) → ∃𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))
3312ad2antrr 480 . . . . . . 7 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦𝐾 ∧ ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))) → 𝐽 ∈ (TopOn‘ 𝐽))
343ad2antrr 480 . . . . . . 7 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦𝐾 ∧ ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))) → 𝐾 ∈ (TopOn‘ 𝐾))
3521ad2antrr 480 . . . . . . 7 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦𝐾 ∧ ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))) → 𝑃 𝐽)
36 simplll 523 . . . . . . . 8 ((((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦𝐾 ∧ ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))
3736adantlll 472 . . . . . . 7 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦𝐾 ∧ ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))
38 simprl 521 . . . . . . 7 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦𝐾 ∧ ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))) → 𝑦𝐾)
39 simprrl 529 . . . . . . 7 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦𝐾 ∧ ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))) → (𝐹𝑃) ∈ 𝑦)
40 icnpimaex 12752 . . . . . . 7 (((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝑃 𝐽) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦))
4133, 34, 35, 37, 38, 39, 40syl33anc 1242 . . . . . 6 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦𝐾 ∧ ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦))
42 imaco 5103 . . . . . . . . . . 11 ((𝐺𝐹) “ 𝑥) = (𝐺 “ (𝐹𝑥))
43 imass2 4974 . . . . . . . . . . 11 ((𝐹𝑥) ⊆ 𝑦 → (𝐺 “ (𝐹𝑥)) ⊆ (𝐺𝑦))
4442, 43eqsstrid 3183 . . . . . . . . . 10 ((𝐹𝑥) ⊆ 𝑦 → ((𝐺𝐹) “ 𝑥) ⊆ (𝐺𝑦))
45 simprrr 530 . . . . . . . . . 10 ((((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦𝐾 ∧ ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))) → (𝐺𝑦) ⊆ 𝑧)
46 sstr2 3144 . . . . . . . . . 10 (((𝐺𝐹) “ 𝑥) ⊆ (𝐺𝑦) → ((𝐺𝑦) ⊆ 𝑧 → ((𝐺𝐹) “ 𝑥) ⊆ 𝑧))
4744, 45, 46syl2imc 39 . . . . . . . . 9 ((((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦𝐾 ∧ ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))) → ((𝐹𝑥) ⊆ 𝑦 → ((𝐺𝐹) “ 𝑥) ⊆ 𝑧))
4847adantlll 472 . . . . . . . 8 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦𝐾 ∧ ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))) → ((𝐹𝑥) ⊆ 𝑦 → ((𝐺𝐹) “ 𝑥) ⊆ 𝑧))
4948anim2d 335 . . . . . . 7 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦𝐾 ∧ ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))) → ((𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦) → (𝑃𝑥 ∧ ((𝐺𝐹) “ 𝑥) ⊆ 𝑧)))
5049reximdv 2565 . . . . . 6 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦𝐾 ∧ ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))) → (∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦) → ∃𝑥𝐽 (𝑃𝑥 ∧ ((𝐺𝐹) “ 𝑥) ⊆ 𝑧)))
5141, 50mpd 13 . . . . 5 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦𝐾 ∧ ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))) → ∃𝑥𝐽 (𝑃𝑥 ∧ ((𝐺𝐹) “ 𝑥) ⊆ 𝑧))
5232, 51rexlimddv 2586 . . . 4 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) → ∃𝑥𝐽 (𝑃𝑥 ∧ ((𝐺𝐹) “ 𝑥) ⊆ 𝑧))
5352expr 373 . . 3 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) ∧ 𝑧𝐿) → (((𝐺𝐹)‘𝑃) ∈ 𝑧 → ∃𝑥𝐽 (𝑃𝑥 ∧ ((𝐺𝐹) “ 𝑥) ⊆ 𝑧)))
5453ralrimiva 2537 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) → ∀𝑧𝐿 (((𝐺𝐹)‘𝑃) ∈ 𝑧 → ∃𝑥𝐽 (𝑃𝑥 ∧ ((𝐺𝐹) “ 𝑥) ⊆ 𝑧)))
55 iscnp 12740 . . 3 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐿 ∈ (TopOn‘ 𝐿) ∧ 𝑃 𝐽) → ((𝐺𝐹) ∈ ((𝐽 CnP 𝐿)‘𝑃) ↔ ((𝐺𝐹): 𝐽 𝐿 ∧ ∀𝑧𝐿 (((𝐺𝐹)‘𝑃) ∈ 𝑧 → ∃𝑥𝐽 (𝑃𝑥 ∧ ((𝐺𝐹) “ 𝑥) ⊆ 𝑧)))))
5612, 6, 21, 55syl3anc 1227 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) → ((𝐺𝐹) ∈ ((𝐽 CnP 𝐿)‘𝑃) ↔ ((𝐺𝐹): 𝐽 𝐿 ∧ ∀𝑧𝐿 (((𝐺𝐹)‘𝑃) ∈ 𝑧 → ∃𝑥𝐽 (𝑃𝑥 ∧ ((𝐺𝐹) “ 𝑥) ⊆ 𝑧)))))
5717, 54, 56mpbir2and 933 1 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) → (𝐺𝐹) ∈ ((𝐽 CnP 𝐿)‘𝑃))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 967   = wceq 1342  wcel 2135  wral 2442  wrex 2443  wss 3111   cuni 3783  cima 4601  ccom 4602  wf 5178  cfv 5182  (class class class)co 5836  Topctop 12536  TopOnctopon 12549   CnP ccnp 12727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-id 4265  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-map 6607  df-top 12537  df-topon 12550  df-cnp 12730
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator