Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnptopco GIF version

Theorem cnptopco 12428
 Description: The composition of a function 𝐹 continuous at 𝑃 with a function continuous at (𝐹‘𝑃) is continuous at 𝑃. Proposition 2 of [BourbakiTop1] p. I.9. (Contributed by FL, 16-Nov-2006.) (Proof shortened by Mario Carneiro, 27-Dec-2014.)
Assertion
Ref Expression
cnptopco (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) → (𝐺𝐹) ∈ ((𝐽 CnP 𝐿)‘𝑃))

Proof of Theorem cnptopco
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl2 986 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) → 𝐾 ∈ Top)
2 toptopon2 12223 . . . . 5 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
31, 2sylib 121 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) → 𝐾 ∈ (TopOn‘ 𝐾))
4 simpl3 987 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) → 𝐿 ∈ Top)
5 toptopon2 12223 . . . . 5 (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOn‘ 𝐿))
64, 5sylib 121 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) → 𝐿 ∈ (TopOn‘ 𝐿))
7 simprr 522 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) → 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))
8 cnpf2 12413 . . . 4 ((𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝐿 ∈ (TopOn‘ 𝐿) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) → 𝐺: 𝐾 𝐿)
93, 6, 7, 8syl3anc 1217 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) → 𝐺: 𝐾 𝐿)
10 simpl1 985 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) → 𝐽 ∈ Top)
11 toptopon2 12223 . . . . 5 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
1210, 11sylib 121 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) → 𝐽 ∈ (TopOn‘ 𝐽))
13 simprl 521 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))
14 cnpf2 12413 . . . 4 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹: 𝐽 𝐾)
1512, 3, 13, 14syl3anc 1217 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) → 𝐹: 𝐽 𝐾)
16 fco 5295 . . 3 ((𝐺: 𝐾 𝐿𝐹: 𝐽 𝐾) → (𝐺𝐹): 𝐽 𝐿)
179, 15, 16syl2anc 409 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) → (𝐺𝐹): 𝐽 𝐿)
183adantr 274 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) → 𝐾 ∈ (TopOn‘ 𝐾))
196adantr 274 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) → 𝐿 ∈ (TopOn‘ 𝐿))
20 cnprcl2k 12412 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑃 𝐽)
2112, 1, 13, 20syl3anc 1217 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) → 𝑃 𝐽)
2215, 21ffvelrnd 5563 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) → (𝐹𝑃) ∈ 𝐾)
2322adantr 274 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) → (𝐹𝑃) ∈ 𝐾)
247adantr 274 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) → 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))
25 simprl 521 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) → 𝑧𝐿)
26 fvco3 5499 . . . . . . . . 9 ((𝐹: 𝐽 𝐾𝑃 𝐽) → ((𝐺𝐹)‘𝑃) = (𝐺‘(𝐹𝑃)))
2715, 21, 26syl2anc 409 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) → ((𝐺𝐹)‘𝑃) = (𝐺‘(𝐹𝑃)))
2827adantr 274 . . . . . . 7 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) → ((𝐺𝐹)‘𝑃) = (𝐺‘(𝐹𝑃)))
29 simprr 522 . . . . . . 7 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) → ((𝐺𝐹)‘𝑃) ∈ 𝑧)
3028, 29eqeltrrd 2218 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) → (𝐺‘(𝐹𝑃)) ∈ 𝑧)
31 icnpimaex 12417 . . . . . 6 (((𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝐿 ∈ (TopOn‘ 𝐿) ∧ (𝐹𝑃) ∈ 𝐾) ∧ (𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)) ∧ 𝑧𝐿 ∧ (𝐺‘(𝐹𝑃)) ∈ 𝑧)) → ∃𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))
3218, 19, 23, 24, 25, 30, 31syl33anc 1232 . . . . 5 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) → ∃𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))
3312ad2antrr 480 . . . . . . 7 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦𝐾 ∧ ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))) → 𝐽 ∈ (TopOn‘ 𝐽))
343ad2antrr 480 . . . . . . 7 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦𝐾 ∧ ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))) → 𝐾 ∈ (TopOn‘ 𝐾))
3521ad2antrr 480 . . . . . . 7 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦𝐾 ∧ ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))) → 𝑃 𝐽)
36 simplll 523 . . . . . . . 8 ((((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦𝐾 ∧ ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))
3736adantlll 472 . . . . . . 7 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦𝐾 ∧ ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))
38 simprl 521 . . . . . . 7 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦𝐾 ∧ ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))) → 𝑦𝐾)
39 simprrl 529 . . . . . . 7 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦𝐾 ∧ ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))) → (𝐹𝑃) ∈ 𝑦)
40 icnpimaex 12417 . . . . . . 7 (((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝑃 𝐽) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦))
4133, 34, 35, 37, 38, 39, 40syl33anc 1232 . . . . . 6 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦𝐾 ∧ ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦))
42 imaco 5051 . . . . . . . . . . 11 ((𝐺𝐹) “ 𝑥) = (𝐺 “ (𝐹𝑥))
43 imass2 4922 . . . . . . . . . . 11 ((𝐹𝑥) ⊆ 𝑦 → (𝐺 “ (𝐹𝑥)) ⊆ (𝐺𝑦))
4442, 43eqsstrid 3147 . . . . . . . . . 10 ((𝐹𝑥) ⊆ 𝑦 → ((𝐺𝐹) “ 𝑥) ⊆ (𝐺𝑦))
45 simprrr 530 . . . . . . . . . 10 ((((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦𝐾 ∧ ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))) → (𝐺𝑦) ⊆ 𝑧)
46 sstr2 3108 . . . . . . . . . 10 (((𝐺𝐹) “ 𝑥) ⊆ (𝐺𝑦) → ((𝐺𝑦) ⊆ 𝑧 → ((𝐺𝐹) “ 𝑥) ⊆ 𝑧))
4744, 45, 46syl2imc 39 . . . . . . . . 9 ((((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦𝐾 ∧ ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))) → ((𝐹𝑥) ⊆ 𝑦 → ((𝐺𝐹) “ 𝑥) ⊆ 𝑧))
4847adantlll 472 . . . . . . . 8 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦𝐾 ∧ ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))) → ((𝐹𝑥) ⊆ 𝑦 → ((𝐺𝐹) “ 𝑥) ⊆ 𝑧))
4948anim2d 335 . . . . . . 7 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦𝐾 ∧ ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))) → ((𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦) → (𝑃𝑥 ∧ ((𝐺𝐹) “ 𝑥) ⊆ 𝑧)))
5049reximdv 2536 . . . . . 6 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦𝐾 ∧ ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))) → (∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦) → ∃𝑥𝐽 (𝑃𝑥 ∧ ((𝐺𝐹) “ 𝑥) ⊆ 𝑧)))
5141, 50mpd 13 . . . . 5 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦𝐾 ∧ ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))) → ∃𝑥𝐽 (𝑃𝑥 ∧ ((𝐺𝐹) “ 𝑥) ⊆ 𝑧))
5232, 51rexlimddv 2557 . . . 4 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) → ∃𝑥𝐽 (𝑃𝑥 ∧ ((𝐺𝐹) “ 𝑥) ⊆ 𝑧))
5352expr 373 . . 3 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) ∧ 𝑧𝐿) → (((𝐺𝐹)‘𝑃) ∈ 𝑧 → ∃𝑥𝐽 (𝑃𝑥 ∧ ((𝐺𝐹) “ 𝑥) ⊆ 𝑧)))
5453ralrimiva 2508 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) → ∀𝑧𝐿 (((𝐺𝐹)‘𝑃) ∈ 𝑧 → ∃𝑥𝐽 (𝑃𝑥 ∧ ((𝐺𝐹) “ 𝑥) ⊆ 𝑧)))
55 iscnp 12405 . . 3 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐿 ∈ (TopOn‘ 𝐿) ∧ 𝑃 𝐽) → ((𝐺𝐹) ∈ ((𝐽 CnP 𝐿)‘𝑃) ↔ ((𝐺𝐹): 𝐽 𝐿 ∧ ∀𝑧𝐿 (((𝐺𝐹)‘𝑃) ∈ 𝑧 → ∃𝑥𝐽 (𝑃𝑥 ∧ ((𝐺𝐹) “ 𝑥) ⊆ 𝑧)))))
5612, 6, 21, 55syl3anc 1217 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) → ((𝐺𝐹) ∈ ((𝐽 CnP 𝐿)‘𝑃) ↔ ((𝐺𝐹): 𝐽 𝐿 ∧ ∀𝑧𝐿 (((𝐺𝐹)‘𝑃) ∈ 𝑧 → ∃𝑥𝐽 (𝑃𝑥 ∧ ((𝐺𝐹) “ 𝑥) ⊆ 𝑧)))))
5717, 54, 56mpbir2and 929 1 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))) → (𝐺𝐹) ∈ ((𝐽 CnP 𝐿)‘𝑃))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   ∧ w3a 963   = wceq 1332   ∈ wcel 1481  ∀wral 2417  ∃wrex 2418   ⊆ wss 3075  ∪ cuni 3743   “ cima 4549   ∘ ccom 4550  ⟶wf 5126  ‘cfv 5130  (class class class)co 5781  Topctop 12201  TopOnctopon 12214   CnP ccnp 12392 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4050  ax-sep 4053  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459 This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-iun 3822  df-br 3937  df-opab 3997  df-mpt 3998  df-id 4222  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-rn 4557  df-res 4558  df-ima 4559  df-iota 5095  df-fun 5132  df-fn 5133  df-f 5134  df-f1 5135  df-fo 5136  df-f1o 5137  df-fv 5138  df-ov 5784  df-oprab 5785  df-mpo 5786  df-1st 6045  df-2nd 6046  df-map 6551  df-top 12202  df-topon 12215  df-cnp 12395 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator