Step | Hyp | Ref
| Expression |
1 | | simpl2 991 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹‘𝑃)))) → 𝐾 ∈ Top) |
2 | | toptopon2 12657 |
. . . . 5
⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘∪ 𝐾)) |
3 | 1, 2 | sylib 121 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹‘𝑃)))) → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
4 | | simpl3 992 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹‘𝑃)))) → 𝐿 ∈ Top) |
5 | | toptopon2 12657 |
. . . . 5
⊢ (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOn‘∪ 𝐿)) |
6 | 4, 5 | sylib 121 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹‘𝑃)))) → 𝐿 ∈ (TopOn‘∪ 𝐿)) |
7 | | simprr 522 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹‘𝑃)))) → 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹‘𝑃))) |
8 | | cnpf2 12847 |
. . . 4
⊢ ((𝐾 ∈ (TopOn‘∪ 𝐾)
∧ 𝐿 ∈
(TopOn‘∪ 𝐿) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹‘𝑃))) → 𝐺:∪ 𝐾⟶∪ 𝐿) |
9 | 3, 6, 7, 8 | syl3anc 1228 |
. . 3
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹‘𝑃)))) → 𝐺:∪ 𝐾⟶∪ 𝐿) |
10 | | simpl1 990 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹‘𝑃)))) → 𝐽 ∈ Top) |
11 | | toptopon2 12657 |
. . . . 5
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
12 | 10, 11 | sylib 121 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹‘𝑃)))) → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
13 | | simprl 521 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹‘𝑃)))) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) |
14 | | cnpf2 12847 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽)
∧ 𝐾 ∈
(TopOn‘∪ 𝐾) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:∪ 𝐽⟶∪ 𝐾) |
15 | 12, 3, 13, 14 | syl3anc 1228 |
. . 3
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹‘𝑃)))) → 𝐹:∪ 𝐽⟶∪ 𝐾) |
16 | | fco 5353 |
. . 3
⊢ ((𝐺:∪
𝐾⟶∪ 𝐿
∧ 𝐹:∪ 𝐽⟶∪ 𝐾) → (𝐺 ∘ 𝐹):∪ 𝐽⟶∪ 𝐿) |
17 | 9, 15, 16 | syl2anc 409 |
. 2
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹‘𝑃)))) → (𝐺 ∘ 𝐹):∪ 𝐽⟶∪ 𝐿) |
18 | 3 | adantr 274 |
. . . . . 6
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹‘𝑃)))) ∧ (𝑧 ∈ 𝐿 ∧ ((𝐺 ∘ 𝐹)‘𝑃) ∈ 𝑧)) → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
19 | 6 | adantr 274 |
. . . . . 6
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹‘𝑃)))) ∧ (𝑧 ∈ 𝐿 ∧ ((𝐺 ∘ 𝐹)‘𝑃) ∈ 𝑧)) → 𝐿 ∈ (TopOn‘∪ 𝐿)) |
20 | | cnprcl2k 12846 |
. . . . . . . . 9
⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽)
∧ 𝐾 ∈ Top ∧
𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑃 ∈ ∪ 𝐽) |
21 | 12, 1, 13, 20 | syl3anc 1228 |
. . . . . . . 8
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹‘𝑃)))) → 𝑃 ∈ ∪ 𝐽) |
22 | 15, 21 | ffvelrnd 5621 |
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹‘𝑃)))) → (𝐹‘𝑃) ∈ ∪ 𝐾) |
23 | 22 | adantr 274 |
. . . . . 6
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹‘𝑃)))) ∧ (𝑧 ∈ 𝐿 ∧ ((𝐺 ∘ 𝐹)‘𝑃) ∈ 𝑧)) → (𝐹‘𝑃) ∈ ∪ 𝐾) |
24 | 7 | adantr 274 |
. . . . . 6
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹‘𝑃)))) ∧ (𝑧 ∈ 𝐿 ∧ ((𝐺 ∘ 𝐹)‘𝑃) ∈ 𝑧)) → 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹‘𝑃))) |
25 | | simprl 521 |
. . . . . 6
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹‘𝑃)))) ∧ (𝑧 ∈ 𝐿 ∧ ((𝐺 ∘ 𝐹)‘𝑃) ∈ 𝑧)) → 𝑧 ∈ 𝐿) |
26 | | fvco3 5557 |
. . . . . . . . 9
⊢ ((𝐹:∪
𝐽⟶∪ 𝐾
∧ 𝑃 ∈ ∪ 𝐽)
→ ((𝐺 ∘ 𝐹)‘𝑃) = (𝐺‘(𝐹‘𝑃))) |
27 | 15, 21, 26 | syl2anc 409 |
. . . . . . . 8
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹‘𝑃)))) → ((𝐺 ∘ 𝐹)‘𝑃) = (𝐺‘(𝐹‘𝑃))) |
28 | 27 | adantr 274 |
. . . . . . 7
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹‘𝑃)))) ∧ (𝑧 ∈ 𝐿 ∧ ((𝐺 ∘ 𝐹)‘𝑃) ∈ 𝑧)) → ((𝐺 ∘ 𝐹)‘𝑃) = (𝐺‘(𝐹‘𝑃))) |
29 | | simprr 522 |
. . . . . . 7
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹‘𝑃)))) ∧ (𝑧 ∈ 𝐿 ∧ ((𝐺 ∘ 𝐹)‘𝑃) ∈ 𝑧)) → ((𝐺 ∘ 𝐹)‘𝑃) ∈ 𝑧) |
30 | 28, 29 | eqeltrrd 2244 |
. . . . . 6
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹‘𝑃)))) ∧ (𝑧 ∈ 𝐿 ∧ ((𝐺 ∘ 𝐹)‘𝑃) ∈ 𝑧)) → (𝐺‘(𝐹‘𝑃)) ∈ 𝑧) |
31 | | icnpimaex 12851 |
. . . . . 6
⊢ (((𝐾 ∈ (TopOn‘∪ 𝐾)
∧ 𝐿 ∈
(TopOn‘∪ 𝐿) ∧ (𝐹‘𝑃) ∈ ∪ 𝐾) ∧ (𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹‘𝑃)) ∧ 𝑧 ∈ 𝐿 ∧ (𝐺‘(𝐹‘𝑃)) ∈ 𝑧)) → ∃𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 ∧ (𝐺 “ 𝑦) ⊆ 𝑧)) |
32 | 18, 19, 23, 24, 25, 30, 31 | syl33anc 1243 |
. . . . 5
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹‘𝑃)))) ∧ (𝑧 ∈ 𝐿 ∧ ((𝐺 ∘ 𝐹)‘𝑃) ∈ 𝑧)) → ∃𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 ∧ (𝐺 “ 𝑦) ⊆ 𝑧)) |
33 | 12 | ad2antrr 480 |
. . . . . . 7
⊢
(((((𝐽 ∈ Top
∧ 𝐾 ∈ Top ∧
𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹‘𝑃)))) ∧ (𝑧 ∈ 𝐿 ∧ ((𝐺 ∘ 𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦 ∈ 𝐾 ∧ ((𝐹‘𝑃) ∈ 𝑦 ∧ (𝐺 “ 𝑦) ⊆ 𝑧))) → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
34 | 3 | ad2antrr 480 |
. . . . . . 7
⊢
(((((𝐽 ∈ Top
∧ 𝐾 ∈ Top ∧
𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹‘𝑃)))) ∧ (𝑧 ∈ 𝐿 ∧ ((𝐺 ∘ 𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦 ∈ 𝐾 ∧ ((𝐹‘𝑃) ∈ 𝑦 ∧ (𝐺 “ 𝑦) ⊆ 𝑧))) → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
35 | 21 | ad2antrr 480 |
. . . . . . 7
⊢
(((((𝐽 ∈ Top
∧ 𝐾 ∈ Top ∧
𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹‘𝑃)))) ∧ (𝑧 ∈ 𝐿 ∧ ((𝐺 ∘ 𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦 ∈ 𝐾 ∧ ((𝐹‘𝑃) ∈ 𝑦 ∧ (𝐺 “ 𝑦) ⊆ 𝑧))) → 𝑃 ∈ ∪ 𝐽) |
36 | | simplll 523 |
. . . . . . . 8
⊢ ((((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹‘𝑃))) ∧ (𝑧 ∈ 𝐿 ∧ ((𝐺 ∘ 𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦 ∈ 𝐾 ∧ ((𝐹‘𝑃) ∈ 𝑦 ∧ (𝐺 “ 𝑦) ⊆ 𝑧))) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) |
37 | 36 | adantlll 472 |
. . . . . . 7
⊢
(((((𝐽 ∈ Top
∧ 𝐾 ∈ Top ∧
𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹‘𝑃)))) ∧ (𝑧 ∈ 𝐿 ∧ ((𝐺 ∘ 𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦 ∈ 𝐾 ∧ ((𝐹‘𝑃) ∈ 𝑦 ∧ (𝐺 “ 𝑦) ⊆ 𝑧))) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) |
38 | | simprl 521 |
. . . . . . 7
⊢
(((((𝐽 ∈ Top
∧ 𝐾 ∈ Top ∧
𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹‘𝑃)))) ∧ (𝑧 ∈ 𝐿 ∧ ((𝐺 ∘ 𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦 ∈ 𝐾 ∧ ((𝐹‘𝑃) ∈ 𝑦 ∧ (𝐺 “ 𝑦) ⊆ 𝑧))) → 𝑦 ∈ 𝐾) |
39 | | simprrl 529 |
. . . . . . 7
⊢
(((((𝐽 ∈ Top
∧ 𝐾 ∈ Top ∧
𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹‘𝑃)))) ∧ (𝑧 ∈ 𝐿 ∧ ((𝐺 ∘ 𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦 ∈ 𝐾 ∧ ((𝐹‘𝑃) ∈ 𝑦 ∧ (𝐺 “ 𝑦) ⊆ 𝑧))) → (𝐹‘𝑃) ∈ 𝑦) |
40 | | icnpimaex 12851 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘∪ 𝐽)
∧ 𝐾 ∈
(TopOn‘∪ 𝐾) ∧ 𝑃 ∈ ∪ 𝐽) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) |
41 | 33, 34, 35, 37, 38, 39, 40 | syl33anc 1243 |
. . . . . 6
⊢
(((((𝐽 ∈ Top
∧ 𝐾 ∈ Top ∧
𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹‘𝑃)))) ∧ (𝑧 ∈ 𝐿 ∧ ((𝐺 ∘ 𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦 ∈ 𝐾 ∧ ((𝐹‘𝑃) ∈ 𝑦 ∧ (𝐺 “ 𝑦) ⊆ 𝑧))) → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) |
42 | | imaco 5109 |
. . . . . . . . . . 11
⊢ ((𝐺 ∘ 𝐹) “ 𝑥) = (𝐺 “ (𝐹 “ 𝑥)) |
43 | | imass2 4980 |
. . . . . . . . . . 11
⊢ ((𝐹 “ 𝑥) ⊆ 𝑦 → (𝐺 “ (𝐹 “ 𝑥)) ⊆ (𝐺 “ 𝑦)) |
44 | 42, 43 | eqsstrid 3188 |
. . . . . . . . . 10
⊢ ((𝐹 “ 𝑥) ⊆ 𝑦 → ((𝐺 ∘ 𝐹) “ 𝑥) ⊆ (𝐺 “ 𝑦)) |
45 | | simprrr 530 |
. . . . . . . . . 10
⊢ ((((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹‘𝑃))) ∧ (𝑧 ∈ 𝐿 ∧ ((𝐺 ∘ 𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦 ∈ 𝐾 ∧ ((𝐹‘𝑃) ∈ 𝑦 ∧ (𝐺 “ 𝑦) ⊆ 𝑧))) → (𝐺 “ 𝑦) ⊆ 𝑧) |
46 | | sstr2 3149 |
. . . . . . . . . 10
⊢ (((𝐺 ∘ 𝐹) “ 𝑥) ⊆ (𝐺 “ 𝑦) → ((𝐺 “ 𝑦) ⊆ 𝑧 → ((𝐺 ∘ 𝐹) “ 𝑥) ⊆ 𝑧)) |
47 | 44, 45, 46 | syl2imc 39 |
. . . . . . . . 9
⊢ ((((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹‘𝑃))) ∧ (𝑧 ∈ 𝐿 ∧ ((𝐺 ∘ 𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦 ∈ 𝐾 ∧ ((𝐹‘𝑃) ∈ 𝑦 ∧ (𝐺 “ 𝑦) ⊆ 𝑧))) → ((𝐹 “ 𝑥) ⊆ 𝑦 → ((𝐺 ∘ 𝐹) “ 𝑥) ⊆ 𝑧)) |
48 | 47 | adantlll 472 |
. . . . . . . 8
⊢
(((((𝐽 ∈ Top
∧ 𝐾 ∈ Top ∧
𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹‘𝑃)))) ∧ (𝑧 ∈ 𝐿 ∧ ((𝐺 ∘ 𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦 ∈ 𝐾 ∧ ((𝐹‘𝑃) ∈ 𝑦 ∧ (𝐺 “ 𝑦) ⊆ 𝑧))) → ((𝐹 “ 𝑥) ⊆ 𝑦 → ((𝐺 ∘ 𝐹) “ 𝑥) ⊆ 𝑧)) |
49 | 48 | anim2d 335 |
. . . . . . 7
⊢
(((((𝐽 ∈ Top
∧ 𝐾 ∈ Top ∧
𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹‘𝑃)))) ∧ (𝑧 ∈ 𝐿 ∧ ((𝐺 ∘ 𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦 ∈ 𝐾 ∧ ((𝐹‘𝑃) ∈ 𝑦 ∧ (𝐺 “ 𝑦) ⊆ 𝑧))) → ((𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦) → (𝑃 ∈ 𝑥 ∧ ((𝐺 ∘ 𝐹) “ 𝑥) ⊆ 𝑧))) |
50 | 49 | reximdv 2567 |
. . . . . 6
⊢
(((((𝐽 ∈ Top
∧ 𝐾 ∈ Top ∧
𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹‘𝑃)))) ∧ (𝑧 ∈ 𝐿 ∧ ((𝐺 ∘ 𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦 ∈ 𝐾 ∧ ((𝐹‘𝑃) ∈ 𝑦 ∧ (𝐺 “ 𝑦) ⊆ 𝑧))) → (∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦) → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ ((𝐺 ∘ 𝐹) “ 𝑥) ⊆ 𝑧))) |
51 | 41, 50 | mpd 13 |
. . . . 5
⊢
(((((𝐽 ∈ Top
∧ 𝐾 ∈ Top ∧
𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹‘𝑃)))) ∧ (𝑧 ∈ 𝐿 ∧ ((𝐺 ∘ 𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦 ∈ 𝐾 ∧ ((𝐹‘𝑃) ∈ 𝑦 ∧ (𝐺 “ 𝑦) ⊆ 𝑧))) → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ ((𝐺 ∘ 𝐹) “ 𝑥) ⊆ 𝑧)) |
52 | 32, 51 | rexlimddv 2588 |
. . . 4
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹‘𝑃)))) ∧ (𝑧 ∈ 𝐿 ∧ ((𝐺 ∘ 𝐹)‘𝑃) ∈ 𝑧)) → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ ((𝐺 ∘ 𝐹) “ 𝑥) ⊆ 𝑧)) |
53 | 52 | expr 373 |
. . 3
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹‘𝑃)))) ∧ 𝑧 ∈ 𝐿) → (((𝐺 ∘ 𝐹)‘𝑃) ∈ 𝑧 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ ((𝐺 ∘ 𝐹) “ 𝑥) ⊆ 𝑧))) |
54 | 53 | ralrimiva 2539 |
. 2
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹‘𝑃)))) → ∀𝑧 ∈ 𝐿 (((𝐺 ∘ 𝐹)‘𝑃) ∈ 𝑧 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ ((𝐺 ∘ 𝐹) “ 𝑥) ⊆ 𝑧))) |
55 | | iscnp 12839 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽)
∧ 𝐿 ∈
(TopOn‘∪ 𝐿) ∧ 𝑃 ∈ ∪ 𝐽) → ((𝐺 ∘ 𝐹) ∈ ((𝐽 CnP 𝐿)‘𝑃) ↔ ((𝐺 ∘ 𝐹):∪ 𝐽⟶∪ 𝐿
∧ ∀𝑧 ∈
𝐿 (((𝐺 ∘ 𝐹)‘𝑃) ∈ 𝑧 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ ((𝐺 ∘ 𝐹) “ 𝑥) ⊆ 𝑧))))) |
56 | 12, 6, 21, 55 | syl3anc 1228 |
. 2
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹‘𝑃)))) → ((𝐺 ∘ 𝐹) ∈ ((𝐽 CnP 𝐿)‘𝑃) ↔ ((𝐺 ∘ 𝐹):∪ 𝐽⟶∪ 𝐿
∧ ∀𝑧 ∈
𝐿 (((𝐺 ∘ 𝐹)‘𝑃) ∈ 𝑧 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ ((𝐺 ∘ 𝐹) “ 𝑥) ⊆ 𝑧))))) |
57 | 17, 54, 56 | mpbir2and 934 |
1
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹‘𝑃)))) → (𝐺 ∘ 𝐹) ∈ ((𝐽 CnP 𝐿)‘𝑃)) |