| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > syl2anr | GIF version | ||
| Description: A double syllogism inference. (Contributed by NM, 17-Sep-2013.) | 
| Ref | Expression | 
|---|---|
| syl2an.1 | ⊢ (𝜑 → 𝜓) | 
| syl2an.2 | ⊢ (𝜏 → 𝜒) | 
| syl2an.3 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | 
| Ref | Expression | 
|---|---|
| syl2anr | ⊢ ((𝜏 ∧ 𝜑) → 𝜃) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | syl2an.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl2an.2 | . . 3 ⊢ (𝜏 → 𝜒) | |
| 3 | syl2an.3 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | 1, 2, 3 | syl2an 289 | . 2 ⊢ ((𝜑 ∧ 𝜏) → 𝜃) | 
| 5 | 4 | ancoms 268 | 1 ⊢ ((𝜏 ∧ 𝜑) → 𝜃) | 
| Copyright terms: Public domain | W3C validator |