Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl2anr | GIF version |
Description: A double syllogism inference. (Contributed by NM, 17-Sep-2013.) |
Ref | Expression |
---|---|
syl2an.1 | ⊢ (𝜑 → 𝜓) |
syl2an.2 | ⊢ (𝜏 → 𝜒) |
syl2an.3 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
syl2anr | ⊢ ((𝜏 ∧ 𝜑) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2an.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | syl2an.2 | . . 3 ⊢ (𝜏 → 𝜒) | |
3 | syl2an.3 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
4 | 1, 2, 3 | syl2an 287 | . 2 ⊢ ((𝜑 ∧ 𝜏) → 𝜃) |
5 | 4 | ancoms 266 | 1 ⊢ ((𝜏 ∧ 𝜑) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem is referenced by: swopo 4266 opswapg 5071 coexg 5129 iotass 5151 resdif 5435 fvexg 5486 isotr 5763 xpexgALT 6078 ixpssmapg 6670 mapen 6788 mapdom1g 6789 elfir 6914 cauappcvgprlemladdfl 7569 addgt0sr 7689 axmulass 7787 axdistr 7788 negeu 8060 ltaddnegr 8294 nnsub 8866 zltnle 9207 elz2 9229 uzaddcl 9491 qaddcl 9537 xltneg 9733 xleneg 9734 iccneg 9886 uzsubsubfz 9942 fzsplit2 9945 fzss1 9958 uzsplit 9987 fz0fzdiffz0 10022 difelfzle 10026 difelfznle 10027 fzonlt0 10059 fzouzsplit 10071 eluzgtdifelfzo 10089 elfzodifsumelfzo 10093 ssfzo12 10116 qltnle 10138 modfzo0difsn 10287 nn0ennn 10325 ser3mono 10370 iseqf1olemjpcl 10387 iseqf1olemqpcl 10388 fser0const 10408 faclbnd 10608 bcval4 10619 bcpasc 10633 hashfacen 10700 seq3coll 10706 crim 10751 fsumshftm 11335 isumshft 11380 cvgratgt0 11423 mertenslemi1 11425 prod1dc 11476 fprod1p 11489 fprodmodd 11531 negdvdsb 11695 dvdsnegb 11696 dvdsmul1 11701 dvdsabseq 11731 dvdsssfz1 11736 odd2np1 11756 ndvdsadd 11814 dvdssqim 11899 nn0seqcvgd 11909 algcvgblem 11917 cncongr2 11972 prmind2 11988 prmdvdsfz 12006 prmndvdsfaclt 12021 phisum 12103 resttopon 12542 cnovex 12567 iscn 12568 iscnp 12570 cnco 12592 cndis 12612 hmeoco 12687 bl2in 12774 metss2lem 12868 metss2 12869 bdxmet 12872 metrest 12877 ioo2bl 12914 elcncf 12931 dvexp 13046 relogexp 13164 logcxp 13189 supfz 13610 |
Copyright terms: Public domain | W3C validator |