| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl3anl2 | GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 24-Feb-2005.) |
| Ref | Expression |
|---|---|
| syl3anl2.1 | ⊢ (𝜑 → 𝜒) |
| syl3anl2.2 | ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂) |
| Ref | Expression |
|---|---|
| syl3anl2 | ⊢ (((𝜓 ∧ 𝜑 ∧ 𝜃) ∧ 𝜏) → 𝜂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anl2.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 2 | syl3anl2.2 | . . . 4 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂) | |
| 3 | 2 | ex 115 | . . 3 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → (𝜏 → 𝜂)) |
| 4 | 1, 3 | syl3an2 1283 | . 2 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜃) → (𝜏 → 𝜂)) |
| 5 | 4 | imp 124 | 1 ⊢ (((𝜓 ∧ 𝜑 ∧ 𝜃) ∧ 𝜏) → 𝜂) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: syl3anr2 1302 |
| Copyright terms: Public domain | W3C validator |