ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl3anl1 GIF version

Theorem syl3anl1 1281
Description: A syllogism inference. (Contributed by NM, 24-Feb-2005.)
Hypotheses
Ref Expression
syl3anl1.1 (𝜑𝜓)
syl3anl1.2 (((𝜓𝜒𝜃) ∧ 𝜏) → 𝜂)
Assertion
Ref Expression
syl3anl1 (((𝜑𝜒𝜃) ∧ 𝜏) → 𝜂)

Proof of Theorem syl3anl1
StepHypRef Expression
1 syl3anl1.1 . . 3 (𝜑𝜓)
213anim1i 1180 . 2 ((𝜑𝜒𝜃) → (𝜓𝜒𝜃))
3 syl3anl1.2 . 2 (((𝜓𝜒𝜃) ∧ 𝜏) → 𝜂)
42, 3sylan 281 1 (((𝜑𝜒𝜃) ∧ 𝜏) → 𝜂)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 975
This theorem is referenced by:  xrmaxaddlem  11223  lgsdinn0  13743
  Copyright terms: Public domain W3C validator