Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl3an2 | GIF version |
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
Ref | Expression |
---|---|
syl3an2.1 | ⊢ (𝜑 → 𝜒) |
syl3an2.2 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
syl3an2 | ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3an2.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
2 | syl3an2.2 | . . . 4 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | |
3 | 2 | 3exp 1192 | . . 3 ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) |
4 | 1, 3 | syl5 32 | . 2 ⊢ (𝜓 → (𝜑 → (𝜃 → 𝜏))) |
5 | 4 | 3imp 1183 | 1 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜃) → 𝜏) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: syl3an2b 1265 syl3an2br 1268 syl3anl2 1277 nndi 6454 nnmass 6455 prarloclemarch2 7360 1idprl 7531 1idpru 7532 recexprlem1ssl 7574 recexprlem1ssu 7575 msqge0 8514 mulge0 8517 divsubdirap 8604 divdiv32ap 8616 peano2uz 9521 fzoshftral 10173 expdivap 10506 bcval5 10676 redivap 10816 imdivap 10823 absdiflt 11034 absdifle 11035 retanclap 11663 tannegap 11669 lcmgcdeq 12015 isprm3 12050 prmdvdsexpb 12081 dvdsprmpweqnn 12267 cnpf2 12847 blres 13074 |
Copyright terms: Public domain | W3C validator |