ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl3an2 GIF version

Theorem syl3an2 1283
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.)
Hypotheses
Ref Expression
syl3an2.1 (𝜑𝜒)
syl3an2.2 ((𝜓𝜒𝜃) → 𝜏)
Assertion
Ref Expression
syl3an2 ((𝜓𝜑𝜃) → 𝜏)

Proof of Theorem syl3an2
StepHypRef Expression
1 syl3an2.1 . . 3 (𝜑𝜒)
2 syl3an2.2 . . . 4 ((𝜓𝜒𝜃) → 𝜏)
323exp 1204 . . 3 (𝜓 → (𝜒 → (𝜃𝜏)))
41, 3syl5 32 . 2 (𝜓 → (𝜑 → (𝜃𝜏)))
543imp 1195 1 ((𝜓𝜑𝜃) → 𝜏)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  syl3an2b  1286  syl3an2br  1289  syl3anl2  1298  nndi  6546  nnmass  6547  prarloclemarch2  7489  1idprl  7660  1idpru  7661  recexprlem1ssl  7703  recexprlem1ssu  7704  msqge0  8646  mulge0  8649  divsubdirap  8738  divdiv32ap  8750  peano2uz  9660  fzoshftral  10317  expdivap  10685  bcval5  10858  redivap  11042  imdivap  11049  absdiflt  11260  absdifle  11261  retanclap  11890  tannegap  11896  lcmgcdeq  12262  isprm3  12297  prmdvdsexpb  12328  dvdsprmpweqnn  12516  mulgaddcomlem  13301  mulginvcom  13303  cnpf2  14469  blres  14696
  Copyright terms: Public domain W3C validator