| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl3an2 | GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
| Ref | Expression |
|---|---|
| syl3an2.1 | ⊢ (𝜑 → 𝜒) |
| syl3an2.2 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syl3an2 | ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3an2.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 2 | syl3an2.2 | . . . 4 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | |
| 3 | 2 | 3exp 1204 | . . 3 ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) |
| 4 | 1, 3 | syl5 32 | . 2 ⊢ (𝜓 → (𝜑 → (𝜃 → 𝜏))) |
| 5 | 4 | 3imp 1195 | 1 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜃) → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: syl3an2b 1286 syl3an2br 1289 syl3anl2 1298 nndi 6553 nnmass 6554 prarloclemarch2 7503 1idprl 7674 1idpru 7675 recexprlem1ssl 7717 recexprlem1ssu 7718 msqge0 8660 mulge0 8663 divsubdirap 8752 divdiv32ap 8764 peano2uz 9674 fzoshftral 10331 expdivap 10699 bcval5 10872 redivap 11056 imdivap 11063 absdiflt 11274 absdifle 11275 retanclap 11904 tannegap 11910 lcmgcdeq 12276 isprm3 12311 prmdvdsexpb 12342 dvdsprmpweqnn 12530 mulgaddcomlem 13351 mulginvcom 13353 cnpf2 14527 blres 14754 |
| Copyright terms: Public domain | W3C validator |