| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl3an2 | GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
| Ref | Expression |
|---|---|
| syl3an2.1 | ⊢ (𝜑 → 𝜒) |
| syl3an2.2 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syl3an2 | ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3an2.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 2 | syl3an2.2 | . . . 4 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | |
| 3 | 2 | 3exp 1226 | . . 3 ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) |
| 4 | 1, 3 | syl5 32 | . 2 ⊢ (𝜓 → (𝜑 → (𝜃 → 𝜏))) |
| 5 | 4 | 3imp 1217 | 1 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜃) → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 1002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: syl3an2b 1308 syl3an2br 1311 syl3anl2 1320 nndi 6630 nnmass 6631 prarloclemarch2 7602 1idprl 7773 1idpru 7774 recexprlem1ssl 7816 recexprlem1ssu 7817 msqge0 8759 mulge0 8762 divsubdirap 8851 divdiv32ap 8863 peano2uz 9774 fzoshftral 10439 expdivap 10807 bcval5 10980 ccats1val1g 11165 redivap 11380 imdivap 11387 absdiflt 11598 absdifle 11599 retanclap 12228 tannegap 12234 lcmgcdeq 12600 isprm3 12635 prmdvdsexpb 12666 dvdsprmpweqnn 12854 mulgaddcomlem 13677 mulginvcom 13679 cnpf2 14875 blres 15102 |
| Copyright terms: Public domain | W3C validator |