| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl3an2 | GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
| Ref | Expression |
|---|---|
| syl3an2.1 | ⊢ (𝜑 → 𝜒) |
| syl3an2.2 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syl3an2 | ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3an2.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 2 | syl3an2.2 | . . . 4 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | |
| 3 | 2 | 3exp 1204 | . . 3 ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) |
| 4 | 1, 3 | syl5 32 | . 2 ⊢ (𝜓 → (𝜑 → (𝜃 → 𝜏))) |
| 5 | 4 | 3imp 1195 | 1 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜃) → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: syl3an2b 1286 syl3an2br 1289 syl3anl2 1298 nndi 6546 nnmass 6547 prarloclemarch2 7489 1idprl 7660 1idpru 7661 recexprlem1ssl 7703 recexprlem1ssu 7704 msqge0 8646 mulge0 8649 divsubdirap 8738 divdiv32ap 8750 peano2uz 9660 fzoshftral 10317 expdivap 10685 bcval5 10858 redivap 11042 imdivap 11049 absdiflt 11260 absdifle 11261 retanclap 11890 tannegap 11896 lcmgcdeq 12262 isprm3 12297 prmdvdsexpb 12328 dvdsprmpweqnn 12516 mulgaddcomlem 13301 mulginvcom 13303 cnpf2 14469 blres 14696 |
| Copyright terms: Public domain | W3C validator |