ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl3an2 GIF version

Theorem syl3an2 1283
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.)
Hypotheses
Ref Expression
syl3an2.1 (𝜑𝜒)
syl3an2.2 ((𝜓𝜒𝜃) → 𝜏)
Assertion
Ref Expression
syl3an2 ((𝜓𝜑𝜃) → 𝜏)

Proof of Theorem syl3an2
StepHypRef Expression
1 syl3an2.1 . . 3 (𝜑𝜒)
2 syl3an2.2 . . . 4 ((𝜓𝜒𝜃) → 𝜏)
323exp 1204 . . 3 (𝜓 → (𝜒 → (𝜃𝜏)))
41, 3syl5 32 . 2 (𝜓 → (𝜑 → (𝜃𝜏)))
543imp 1195 1 ((𝜓𝜑𝜃) → 𝜏)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  syl3an2b  1286  syl3an2br  1289  syl3anl2  1298  nndi  6553  nnmass  6554  prarloclemarch2  7505  1idprl  7676  1idpru  7677  recexprlem1ssl  7719  recexprlem1ssu  7720  msqge0  8662  mulge0  8665  divsubdirap  8754  divdiv32ap  8766  peano2uz  9676  fzoshftral  10333  expdivap  10701  bcval5  10874  redivap  11058  imdivap  11065  absdiflt  11276  absdifle  11277  retanclap  11906  tannegap  11912  lcmgcdeq  12278  isprm3  12313  prmdvdsexpb  12344  dvdsprmpweqnn  12532  mulgaddcomlem  13353  mulginvcom  13355  cnpf2  14551  blres  14778
  Copyright terms: Public domain W3C validator