| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl3an2 | GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
| Ref | Expression |
|---|---|
| syl3an2.1 | ⊢ (𝜑 → 𝜒) |
| syl3an2.2 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syl3an2 | ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3an2.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 2 | syl3an2.2 | . . . 4 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | |
| 3 | 2 | 3exp 1205 | . . 3 ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) |
| 4 | 1, 3 | syl5 32 | . 2 ⊢ (𝜓 → (𝜑 → (𝜃 → 𝜏))) |
| 5 | 4 | 3imp 1196 | 1 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜃) → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: syl3an2b 1287 syl3an2br 1290 syl3anl2 1299 nndi 6584 nnmass 6585 prarloclemarch2 7547 1idprl 7718 1idpru 7719 recexprlem1ssl 7761 recexprlem1ssu 7762 msqge0 8704 mulge0 8707 divsubdirap 8796 divdiv32ap 8808 peano2uz 9719 fzoshftral 10384 expdivap 10752 bcval5 10925 ccats1val1g 11109 redivap 11255 imdivap 11262 absdiflt 11473 absdifle 11474 retanclap 12103 tannegap 12109 lcmgcdeq 12475 isprm3 12510 prmdvdsexpb 12541 dvdsprmpweqnn 12729 mulgaddcomlem 13551 mulginvcom 13553 cnpf2 14749 blres 14976 |
| Copyright terms: Public domain | W3C validator |