ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl3an2 GIF version

Theorem syl3an2 1283
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.)
Hypotheses
Ref Expression
syl3an2.1 (𝜑𝜒)
syl3an2.2 ((𝜓𝜒𝜃) → 𝜏)
Assertion
Ref Expression
syl3an2 ((𝜓𝜑𝜃) → 𝜏)

Proof of Theorem syl3an2
StepHypRef Expression
1 syl3an2.1 . . 3 (𝜑𝜒)
2 syl3an2.2 . . . 4 ((𝜓𝜒𝜃) → 𝜏)
323exp 1204 . . 3 (𝜓 → (𝜒 → (𝜃𝜏)))
41, 3syl5 32 . 2 (𝜓 → (𝜑 → (𝜃𝜏)))
543imp 1195 1 ((𝜓𝜑𝜃) → 𝜏)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  syl3an2b  1286  syl3an2br  1289  syl3anl2  1298  nndi  6553  nnmass  6554  prarloclemarch2  7503  1idprl  7674  1idpru  7675  recexprlem1ssl  7717  recexprlem1ssu  7718  msqge0  8660  mulge0  8663  divsubdirap  8752  divdiv32ap  8764  peano2uz  9674  fzoshftral  10331  expdivap  10699  bcval5  10872  redivap  11056  imdivap  11063  absdiflt  11274  absdifle  11275  retanclap  11904  tannegap  11910  lcmgcdeq  12276  isprm3  12311  prmdvdsexpb  12342  dvdsprmpweqnn  12530  mulgaddcomlem  13351  mulginvcom  13353  cnpf2  14527  blres  14754
  Copyright terms: Public domain W3C validator