| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl3an2 | GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
| Ref | Expression |
|---|---|
| syl3an2.1 | ⊢ (𝜑 → 𝜒) |
| syl3an2.2 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syl3an2 | ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3an2.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 2 | syl3an2.2 | . . . 4 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | |
| 3 | 2 | 3exp 1204 | . . 3 ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) |
| 4 | 1, 3 | syl5 32 | . 2 ⊢ (𝜓 → (𝜑 → (𝜃 → 𝜏))) |
| 5 | 4 | 3imp 1195 | 1 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜃) → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: syl3an2b 1286 syl3an2br 1289 syl3anl2 1298 nndi 6544 nnmass 6545 prarloclemarch2 7486 1idprl 7657 1idpru 7658 recexprlem1ssl 7700 recexprlem1ssu 7701 msqge0 8643 mulge0 8646 divsubdirap 8735 divdiv32ap 8747 peano2uz 9657 fzoshftral 10314 expdivap 10682 bcval5 10855 redivap 11039 imdivap 11046 absdiflt 11257 absdifle 11258 retanclap 11887 tannegap 11893 lcmgcdeq 12251 isprm3 12286 prmdvdsexpb 12317 dvdsprmpweqnn 12505 mulgaddcomlem 13275 mulginvcom 13277 cnpf2 14443 blres 14670 |
| Copyright terms: Public domain | W3C validator |