| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl3an2 | GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
| Ref | Expression |
|---|---|
| syl3an2.1 | ⊢ (𝜑 → 𝜒) |
| syl3an2.2 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syl3an2 | ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3an2.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 2 | syl3an2.2 | . . . 4 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | |
| 3 | 2 | 3exp 1204 | . . 3 ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) |
| 4 | 1, 3 | syl5 32 | . 2 ⊢ (𝜓 → (𝜑 → (𝜃 → 𝜏))) |
| 5 | 4 | 3imp 1195 | 1 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜃) → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: syl3an2b 1286 syl3an2br 1289 syl3anl2 1298 nndi 6553 nnmass 6554 prarloclemarch2 7505 1idprl 7676 1idpru 7677 recexprlem1ssl 7719 recexprlem1ssu 7720 msqge0 8662 mulge0 8665 divsubdirap 8754 divdiv32ap 8766 peano2uz 9676 fzoshftral 10333 expdivap 10701 bcval5 10874 redivap 11058 imdivap 11065 absdiflt 11276 absdifle 11277 retanclap 11906 tannegap 11912 lcmgcdeq 12278 isprm3 12313 prmdvdsexpb 12344 dvdsprmpweqnn 12532 mulgaddcomlem 13353 mulginvcom 13355 cnpf2 14551 blres 14778 |
| Copyright terms: Public domain | W3C validator |