ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sylbb1 GIF version

Theorem sylbb1 136
Description: A mixed syllogism inference from two biconditionals. (Contributed by BJ, 21-Apr-2019.)
Hypotheses
Ref Expression
sylbb1.1 (𝜑𝜓)
sylbb1.2 (𝜑𝜒)
Assertion
Ref Expression
sylbb1 (𝜓𝜒)

Proof of Theorem sylbb1
StepHypRef Expression
1 sylbb1.1 . . 3 (𝜑𝜓)
21biimpri 132 . 2 (𝜓𝜑)
3 sylbb1.2 . 2 (𝜑𝜒)
42, 3sylib 121 1 (𝜓𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  ontri2orexmidim  4556  nnwosdc  11994  isstructr  12431
  Copyright terms: Public domain W3C validator