ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnwosdc GIF version

Theorem nnwosdc 12410
Description: Well-ordering principle: any inhabited decidable set of positive integers has a least element (schema form). (Contributed by NM, 17-Aug-2001.) (Revised by Jim Kingdon, 25-Oct-2024.)
Hypothesis
Ref Expression
nnwos.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
nnwosdc ((∃𝑥 ∈ ℕ 𝜑 ∧ ∀𝑥 ∈ ℕ DECID 𝜑) → ∃𝑥 ∈ ℕ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦)))
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem nnwosdc
Dummy variables 𝑗 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rabn0m 3490 . . . . 5 (∃𝑤 𝑤 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ ∃𝑥 ∈ ℕ 𝜑)
2 ssrab2 3280 . . . . . 6 {𝑥 ∈ ℕ ∣ 𝜑} ⊆ ℕ
32biantrur 303 . . . . 5 (∃𝑤 𝑤 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ ({𝑥 ∈ ℕ ∣ 𝜑} ⊆ ℕ ∧ ∃𝑤 𝑤 ∈ {𝑥 ∈ ℕ ∣ 𝜑}))
41, 3sylbb1 137 . . . 4 (∃𝑥 ∈ ℕ 𝜑 → ({𝑥 ∈ ℕ ∣ 𝜑} ⊆ ℕ ∧ ∃𝑤 𝑤 ∈ {𝑥 ∈ ℕ ∣ 𝜑}))
5 animorrl 828 . . . . . . . 8 ((∀𝑥 ∈ ℕ DECID 𝜑𝑗 ∈ ℕ) → (𝑗 ∈ ℕ ∨ ¬ 𝑗 ∈ ℕ))
6 df-dc 837 . . . . . . . 8 (DECID 𝑗 ∈ ℕ ↔ (𝑗 ∈ ℕ ∨ ¬ 𝑗 ∈ ℕ))
75, 6sylibr 134 . . . . . . 7 ((∀𝑥 ∈ ℕ DECID 𝜑𝑗 ∈ ℕ) → DECID 𝑗 ∈ ℕ)
8 nfs1v 1968 . . . . . . . . . 10 𝑥[𝑗 / 𝑥]𝜑
98nfdc 1683 . . . . . . . . 9 𝑥DECID [𝑗 / 𝑥]𝜑
10 sbequ12 1795 . . . . . . . . . 10 (𝑥 = 𝑗 → (𝜑 ↔ [𝑗 / 𝑥]𝜑))
1110dcbid 840 . . . . . . . . 9 (𝑥 = 𝑗 → (DECID 𝜑DECID [𝑗 / 𝑥]𝜑))
129, 11rspc 2873 . . . . . . . 8 (𝑗 ∈ ℕ → (∀𝑥 ∈ ℕ DECID 𝜑DECID [𝑗 / 𝑥]𝜑))
1312impcom 125 . . . . . . 7 ((∀𝑥 ∈ ℕ DECID 𝜑𝑗 ∈ ℕ) → DECID [𝑗 / 𝑥]𝜑)
147, 13dcand 935 . . . . . 6 ((∀𝑥 ∈ ℕ DECID 𝜑𝑗 ∈ ℕ) → DECID (𝑗 ∈ ℕ ∧ [𝑗 / 𝑥]𝜑))
15 nfcv 2349 . . . . . . . 8 𝑥𝑗
16 nfcv 2349 . . . . . . . 8 𝑥
1715, 16, 8, 10elrabf 2929 . . . . . . 7 (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝑗 ∈ ℕ ∧ [𝑗 / 𝑥]𝜑))
1817dcbii 842 . . . . . 6 (DECID 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ DECID (𝑗 ∈ ℕ ∧ [𝑗 / 𝑥]𝜑))
1914, 18sylibr 134 . . . . 5 ((∀𝑥 ∈ ℕ DECID 𝜑𝑗 ∈ ℕ) → DECID 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝜑})
2019ralrimiva 2580 . . . 4 (∀𝑥 ∈ ℕ DECID 𝜑 → ∀𝑗 ∈ ℕ DECID 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝜑})
214, 20anim12i 338 . . 3 ((∃𝑥 ∈ ℕ 𝜑 ∧ ∀𝑥 ∈ ℕ DECID 𝜑) → (({𝑥 ∈ ℕ ∣ 𝜑} ⊆ ℕ ∧ ∃𝑤 𝑤 ∈ {𝑥 ∈ ℕ ∣ 𝜑}) ∧ ∀𝑗 ∈ ℕ DECID 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝜑}))
22 df-3an 983 . . 3 (({𝑥 ∈ ℕ ∣ 𝜑} ⊆ ℕ ∧ ∃𝑤 𝑤 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑗 ∈ ℕ DECID 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝜑}) ↔ (({𝑥 ∈ ℕ ∣ 𝜑} ⊆ ℕ ∧ ∃𝑤 𝑤 ∈ {𝑥 ∈ ℕ ∣ 𝜑}) ∧ ∀𝑗 ∈ ℕ DECID 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝜑}))
2321, 22sylibr 134 . 2 ((∃𝑥 ∈ ℕ 𝜑 ∧ ∀𝑥 ∈ ℕ DECID 𝜑) → ({𝑥 ∈ ℕ ∣ 𝜑} ⊆ ℕ ∧ ∃𝑤 𝑤 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑗 ∈ ℕ DECID 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝜑}))
24 nfrab1 2687 . . . 4 𝑥{𝑥 ∈ ℕ ∣ 𝜑}
25 nfcv 2349 . . . 4 𝑦{𝑥 ∈ ℕ ∣ 𝜑}
2624, 25nnwofdc 12409 . . 3 (({𝑥 ∈ ℕ ∣ 𝜑} ⊆ ℕ ∧ ∃𝑤 𝑤 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑗 ∈ ℕ DECID 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝜑}) → ∃𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑}∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥𝑦)
27 df-rex 2491 . . . 4 (∃𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑}∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥𝑦 ↔ ∃𝑥(𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥𝑦))
28 rabid 2683 . . . . . 6 (𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝑥 ∈ ℕ ∧ 𝜑))
29 df-ral 2490 . . . . . . 7 (∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥𝑦 ↔ ∀𝑦(𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → 𝑥𝑦))
30 nnwos.1 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝜑𝜓))
3130, 30, 303bitr2d 216 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝜑𝜓))
3231elrab 2931 . . . . . . . . . 10 (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝑦 ∈ ℕ ∧ 𝜓))
3332imbi1i 238 . . . . . . . . 9 ((𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → 𝑥𝑦) ↔ ((𝑦 ∈ ℕ ∧ 𝜓) → 𝑥𝑦))
34 impexp 263 . . . . . . . . 9 (((𝑦 ∈ ℕ ∧ 𝜓) → 𝑥𝑦) ↔ (𝑦 ∈ ℕ → (𝜓𝑥𝑦)))
3533, 34bitri 184 . . . . . . . 8 ((𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → 𝑥𝑦) ↔ (𝑦 ∈ ℕ → (𝜓𝑥𝑦)))
3635albii 1494 . . . . . . 7 (∀𝑦(𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → 𝑥𝑦) ↔ ∀𝑦(𝑦 ∈ ℕ → (𝜓𝑥𝑦)))
3729, 36bitri 184 . . . . . 6 (∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥𝑦 ↔ ∀𝑦(𝑦 ∈ ℕ → (𝜓𝑥𝑦)))
3828, 37anbi12i 460 . . . . 5 ((𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥𝑦) ↔ ((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓𝑥𝑦))))
3938exbii 1629 . . . 4 (∃𝑥(𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥𝑦) ↔ ∃𝑥((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓𝑥𝑦))))
40 df-ral 2490 . . . . . . . 8 (∀𝑦 ∈ ℕ (𝜓𝑥𝑦) ↔ ∀𝑦(𝑦 ∈ ℕ → (𝜓𝑥𝑦)))
4140anbi2i 457 . . . . . . 7 (((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦)) ↔ ((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓𝑥𝑦))))
42 anass 401 . . . . . . 7 (((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦)) ↔ (𝑥 ∈ ℕ ∧ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦))))
4341, 42bitr3i 186 . . . . . 6 (((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓𝑥𝑦))) ↔ (𝑥 ∈ ℕ ∧ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦))))
4443exbii 1629 . . . . 5 (∃𝑥((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓𝑥𝑦))) ↔ ∃𝑥(𝑥 ∈ ℕ ∧ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦))))
45 df-rex 2491 . . . . 5 (∃𝑥 ∈ ℕ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦)) ↔ ∃𝑥(𝑥 ∈ ℕ ∧ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦))))
4644, 45bitr4i 187 . . . 4 (∃𝑥((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓𝑥𝑦))) ↔ ∃𝑥 ∈ ℕ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦)))
4727, 39, 463bitri 206 . . 3 (∃𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑}∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥𝑦 ↔ ∃𝑥 ∈ ℕ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦)))
4826, 47sylib 122 . 2 (({𝑥 ∈ ℕ ∣ 𝜑} ⊆ ℕ ∧ ∃𝑤 𝑤 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑗 ∈ ℕ DECID 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝜑}) → ∃𝑥 ∈ ℕ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦)))
4923, 48syl 14 1 ((∃𝑥 ∈ ℕ 𝜑 ∧ ∀𝑥 ∈ ℕ DECID 𝜑) → ∃𝑥 ∈ ℕ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  DECID wdc 836  w3a 981  wal 1371  wex 1516  [wsb 1786  wcel 2177  wral 2485  wrex 2486  {crab 2489  wss 3168   class class class wbr 4048  cle 8121  cn 9049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-addcom 8038  ax-addass 8040  ax-distr 8042  ax-i2m1 8043  ax-0lt1 8044  ax-0id 8046  ax-rnegex 8047  ax-cnre 8049  ax-pre-ltirr 8050  ax-pre-ltwlin 8051  ax-pre-lttrn 8052  ax-pre-apti 8053  ax-pre-ltadd 8054
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-po 4348  df-iso 4349  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-isom 5286  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-sup 7098  df-inf 7099  df-pnf 8122  df-mnf 8123  df-xr 8124  df-ltxr 8125  df-le 8126  df-sub 8258  df-neg 8259  df-inn 9050  df-n0 9309  df-z 9386  df-uz 9662  df-fz 10144  df-fzo 10278
This theorem is referenced by:  infpnlem2  12733
  Copyright terms: Public domain W3C validator