Step | Hyp | Ref
| Expression |
1 | | rabn0m 3442 |
. . . . 5
⊢
(∃𝑤 𝑤 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ ∃𝑥 ∈ ℕ 𝜑) |
2 | | ssrab2 3232 |
. . . . . 6
⊢ {𝑥 ∈ ℕ ∣ 𝜑} ⊆ ℕ |
3 | 2 | biantrur 301 |
. . . . 5
⊢
(∃𝑤 𝑤 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ ({𝑥 ∈ ℕ ∣ 𝜑} ⊆ ℕ ∧ ∃𝑤 𝑤 ∈ {𝑥 ∈ ℕ ∣ 𝜑})) |
4 | 1, 3 | sylbb1 136 |
. . . 4
⊢
(∃𝑥 ∈
ℕ 𝜑 → ({𝑥 ∈ ℕ ∣ 𝜑} ⊆ ℕ ∧
∃𝑤 𝑤 ∈ {𝑥 ∈ ℕ ∣ 𝜑})) |
5 | | animorrl 821 |
. . . . . . . 8
⊢
((∀𝑥 ∈
ℕ DECID 𝜑 ∧ 𝑗 ∈ ℕ) → (𝑗 ∈ ℕ ∨ ¬ 𝑗 ∈ ℕ)) |
6 | | df-dc 830 |
. . . . . . . 8
⊢
(DECID 𝑗 ∈ ℕ ↔ (𝑗 ∈ ℕ ∨ ¬ 𝑗 ∈ ℕ)) |
7 | 5, 6 | sylibr 133 |
. . . . . . 7
⊢
((∀𝑥 ∈
ℕ DECID 𝜑 ∧ 𝑗 ∈ ℕ) → DECID
𝑗 ∈
ℕ) |
8 | | nfs1v 1932 |
. . . . . . . . . 10
⊢
Ⅎ𝑥[𝑗 / 𝑥]𝜑 |
9 | 8 | nfdc 1652 |
. . . . . . . . 9
⊢
Ⅎ𝑥DECID [𝑗 / 𝑥]𝜑 |
10 | | sbequ12 1764 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑗 → (𝜑 ↔ [𝑗 / 𝑥]𝜑)) |
11 | 10 | dcbid 833 |
. . . . . . . . 9
⊢ (𝑥 = 𝑗 → (DECID 𝜑 ↔ DECID [𝑗 / 𝑥]𝜑)) |
12 | 9, 11 | rspc 2828 |
. . . . . . . 8
⊢ (𝑗 ∈ ℕ →
(∀𝑥 ∈ ℕ
DECID 𝜑 →
DECID [𝑗 /
𝑥]𝜑)) |
13 | 12 | impcom 124 |
. . . . . . 7
⊢
((∀𝑥 ∈
ℕ DECID 𝜑 ∧ 𝑗 ∈ ℕ) → DECID
[𝑗 / 𝑥]𝜑) |
14 | | dcan2 929 |
. . . . . . 7
⊢
(DECID 𝑗 ∈ ℕ → (DECID
[𝑗 / 𝑥]𝜑 → DECID (𝑗 ∈ ℕ ∧ [𝑗 / 𝑥]𝜑))) |
15 | 7, 13, 14 | sylc 62 |
. . . . . 6
⊢
((∀𝑥 ∈
ℕ DECID 𝜑 ∧ 𝑗 ∈ ℕ) → DECID
(𝑗 ∈ ℕ ∧
[𝑗 / 𝑥]𝜑)) |
16 | | nfcv 2312 |
. . . . . . . 8
⊢
Ⅎ𝑥𝑗 |
17 | | nfcv 2312 |
. . . . . . . 8
⊢
Ⅎ𝑥ℕ |
18 | 16, 17, 8, 10 | elrabf 2884 |
. . . . . . 7
⊢ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝑗 ∈ ℕ ∧ [𝑗 / 𝑥]𝜑)) |
19 | 18 | dcbii 835 |
. . . . . 6
⊢
(DECID 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ DECID (𝑗 ∈ ℕ ∧ [𝑗 / 𝑥]𝜑)) |
20 | 15, 19 | sylibr 133 |
. . . . 5
⊢
((∀𝑥 ∈
ℕ DECID 𝜑 ∧ 𝑗 ∈ ℕ) → DECID
𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝜑}) |
21 | 20 | ralrimiva 2543 |
. . . 4
⊢
(∀𝑥 ∈
ℕ DECID 𝜑 → ∀𝑗 ∈ ℕ DECID 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝜑}) |
22 | 4, 21 | anim12i 336 |
. . 3
⊢
((∃𝑥 ∈
ℕ 𝜑 ∧ ∀𝑥 ∈ ℕ
DECID 𝜑)
→ (({𝑥 ∈ ℕ
∣ 𝜑} ⊆ ℕ
∧ ∃𝑤 𝑤 ∈ {𝑥 ∈ ℕ ∣ 𝜑}) ∧ ∀𝑗 ∈ ℕ DECID 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝜑})) |
23 | | df-3an 975 |
. . 3
⊢ (({𝑥 ∈ ℕ ∣ 𝜑} ⊆ ℕ ∧
∃𝑤 𝑤 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑗 ∈ ℕ DECID 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝜑}) ↔ (({𝑥 ∈ ℕ ∣ 𝜑} ⊆ ℕ ∧ ∃𝑤 𝑤 ∈ {𝑥 ∈ ℕ ∣ 𝜑}) ∧ ∀𝑗 ∈ ℕ DECID 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝜑})) |
24 | 22, 23 | sylibr 133 |
. 2
⊢
((∃𝑥 ∈
ℕ 𝜑 ∧ ∀𝑥 ∈ ℕ
DECID 𝜑)
→ ({𝑥 ∈ ℕ
∣ 𝜑} ⊆ ℕ
∧ ∃𝑤 𝑤 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑗 ∈ ℕ DECID 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝜑})) |
25 | | nfrab1 2649 |
. . . 4
⊢
Ⅎ𝑥{𝑥 ∈ ℕ ∣ 𝜑} |
26 | | nfcv 2312 |
. . . 4
⊢
Ⅎ𝑦{𝑥 ∈ ℕ ∣ 𝜑} |
27 | 25, 26 | nnwofdc 11993 |
. . 3
⊢ (({𝑥 ∈ ℕ ∣ 𝜑} ⊆ ℕ ∧
∃𝑤 𝑤 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑗 ∈ ℕ DECID 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝜑}) → ∃𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑}∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥 ≤ 𝑦) |
28 | | df-rex 2454 |
. . . 4
⊢
(∃𝑥 ∈
{𝑥 ∈ ℕ ∣
𝜑}∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥 ≤ 𝑦 ↔ ∃𝑥(𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥 ≤ 𝑦)) |
29 | | rabid 2645 |
. . . . . 6
⊢ (𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝑥 ∈ ℕ ∧ 𝜑)) |
30 | | df-ral 2453 |
. . . . . . 7
⊢
(∀𝑦 ∈
{𝑥 ∈ ℕ ∣
𝜑}𝑥 ≤ 𝑦 ↔ ∀𝑦(𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → 𝑥 ≤ 𝑦)) |
31 | | nnwos.1 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
32 | 31 | elrab 2886 |
. . . . . . . . . 10
⊢ (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝑦 ∈ ℕ ∧ 𝜓)) |
33 | 32 | imbi1i 237 |
. . . . . . . . 9
⊢ ((𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → 𝑥 ≤ 𝑦) ↔ ((𝑦 ∈ ℕ ∧ 𝜓) → 𝑥 ≤ 𝑦)) |
34 | | impexp 261 |
. . . . . . . . 9
⊢ (((𝑦 ∈ ℕ ∧ 𝜓) → 𝑥 ≤ 𝑦) ↔ (𝑦 ∈ ℕ → (𝜓 → 𝑥 ≤ 𝑦))) |
35 | 33, 34 | bitri 183 |
. . . . . . . 8
⊢ ((𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → 𝑥 ≤ 𝑦) ↔ (𝑦 ∈ ℕ → (𝜓 → 𝑥 ≤ 𝑦))) |
36 | 35 | albii 1463 |
. . . . . . 7
⊢
(∀𝑦(𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → 𝑥 ≤ 𝑦) ↔ ∀𝑦(𝑦 ∈ ℕ → (𝜓 → 𝑥 ≤ 𝑦))) |
37 | 30, 36 | bitri 183 |
. . . . . 6
⊢
(∀𝑦 ∈
{𝑥 ∈ ℕ ∣
𝜑}𝑥 ≤ 𝑦 ↔ ∀𝑦(𝑦 ∈ ℕ → (𝜓 → 𝑥 ≤ 𝑦))) |
38 | 29, 37 | anbi12i 457 |
. . . . 5
⊢ ((𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥 ≤ 𝑦) ↔ ((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓 → 𝑥 ≤ 𝑦)))) |
39 | 38 | exbii 1598 |
. . . 4
⊢
(∃𝑥(𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥 ≤ 𝑦) ↔ ∃𝑥((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓 → 𝑥 ≤ 𝑦)))) |
40 | | df-ral 2453 |
. . . . . . . 8
⊢
(∀𝑦 ∈
ℕ (𝜓 → 𝑥 ≤ 𝑦) ↔ ∀𝑦(𝑦 ∈ ℕ → (𝜓 → 𝑥 ≤ 𝑦))) |
41 | 40 | anbi2i 454 |
. . . . . . 7
⊢ (((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦 ∈ ℕ (𝜓 → 𝑥 ≤ 𝑦)) ↔ ((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓 → 𝑥 ≤ 𝑦)))) |
42 | | anass 399 |
. . . . . . 7
⊢ (((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦 ∈ ℕ (𝜓 → 𝑥 ≤ 𝑦)) ↔ (𝑥 ∈ ℕ ∧ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓 → 𝑥 ≤ 𝑦)))) |
43 | 41, 42 | bitr3i 185 |
. . . . . 6
⊢ (((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓 → 𝑥 ≤ 𝑦))) ↔ (𝑥 ∈ ℕ ∧ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓 → 𝑥 ≤ 𝑦)))) |
44 | 43 | exbii 1598 |
. . . . 5
⊢
(∃𝑥((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓 → 𝑥 ≤ 𝑦))) ↔ ∃𝑥(𝑥 ∈ ℕ ∧ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓 → 𝑥 ≤ 𝑦)))) |
45 | | df-rex 2454 |
. . . . 5
⊢
(∃𝑥 ∈
ℕ (𝜑 ∧
∀𝑦 ∈ ℕ
(𝜓 → 𝑥 ≤ 𝑦)) ↔ ∃𝑥(𝑥 ∈ ℕ ∧ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓 → 𝑥 ≤ 𝑦)))) |
46 | 44, 45 | bitr4i 186 |
. . . 4
⊢
(∃𝑥((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓 → 𝑥 ≤ 𝑦))) ↔ ∃𝑥 ∈ ℕ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓 → 𝑥 ≤ 𝑦))) |
47 | 28, 39, 46 | 3bitri 205 |
. . 3
⊢
(∃𝑥 ∈
{𝑥 ∈ ℕ ∣
𝜑}∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥 ≤ 𝑦 ↔ ∃𝑥 ∈ ℕ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓 → 𝑥 ≤ 𝑦))) |
48 | 27, 47 | sylib 121 |
. 2
⊢ (({𝑥 ∈ ℕ ∣ 𝜑} ⊆ ℕ ∧
∃𝑤 𝑤 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑗 ∈ ℕ DECID 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝜑}) → ∃𝑥 ∈ ℕ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓 → 𝑥 ≤ 𝑦))) |
49 | 24, 48 | syl 14 |
1
⊢
((∃𝑥 ∈
ℕ 𝜑 ∧ ∀𝑥 ∈ ℕ
DECID 𝜑)
→ ∃𝑥 ∈
ℕ (𝜑 ∧
∀𝑦 ∈ ℕ
(𝜓 → 𝑥 ≤ 𝑦))) |