| Step | Hyp | Ref
 | Expression | 
| 1 |   | rabn0m 3478 | 
. . . . 5
⊢
(∃𝑤 𝑤 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ ∃𝑥 ∈ ℕ 𝜑) | 
| 2 |   | ssrab2 3268 | 
. . . . . 6
⊢ {𝑥 ∈ ℕ ∣ 𝜑} ⊆ ℕ | 
| 3 | 2 | biantrur 303 | 
. . . . 5
⊢
(∃𝑤 𝑤 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ ({𝑥 ∈ ℕ ∣ 𝜑} ⊆ ℕ ∧ ∃𝑤 𝑤 ∈ {𝑥 ∈ ℕ ∣ 𝜑})) | 
| 4 | 1, 3 | sylbb1 137 | 
. . . 4
⊢
(∃𝑥 ∈
ℕ 𝜑 → ({𝑥 ∈ ℕ ∣ 𝜑} ⊆ ℕ ∧
∃𝑤 𝑤 ∈ {𝑥 ∈ ℕ ∣ 𝜑})) | 
| 5 |   | animorrl 827 | 
. . . . . . . 8
⊢
((∀𝑥 ∈
ℕ DECID 𝜑 ∧ 𝑗 ∈ ℕ) → (𝑗 ∈ ℕ ∨ ¬ 𝑗 ∈ ℕ)) | 
| 6 |   | df-dc 836 | 
. . . . . . . 8
⊢
(DECID 𝑗 ∈ ℕ ↔ (𝑗 ∈ ℕ ∨ ¬ 𝑗 ∈ ℕ)) | 
| 7 | 5, 6 | sylibr 134 | 
. . . . . . 7
⊢
((∀𝑥 ∈
ℕ DECID 𝜑 ∧ 𝑗 ∈ ℕ) → DECID
𝑗 ∈
ℕ) | 
| 8 |   | nfs1v 1958 | 
. . . . . . . . . 10
⊢
Ⅎ𝑥[𝑗 / 𝑥]𝜑 | 
| 9 | 8 | nfdc 1673 | 
. . . . . . . . 9
⊢
Ⅎ𝑥DECID [𝑗 / 𝑥]𝜑 | 
| 10 |   | sbequ12 1785 | 
. . . . . . . . . 10
⊢ (𝑥 = 𝑗 → (𝜑 ↔ [𝑗 / 𝑥]𝜑)) | 
| 11 | 10 | dcbid 839 | 
. . . . . . . . 9
⊢ (𝑥 = 𝑗 → (DECID 𝜑 ↔ DECID [𝑗 / 𝑥]𝜑)) | 
| 12 | 9, 11 | rspc 2862 | 
. . . . . . . 8
⊢ (𝑗 ∈ ℕ →
(∀𝑥 ∈ ℕ
DECID 𝜑 →
DECID [𝑗 /
𝑥]𝜑)) | 
| 13 | 12 | impcom 125 | 
. . . . . . 7
⊢
((∀𝑥 ∈
ℕ DECID 𝜑 ∧ 𝑗 ∈ ℕ) → DECID
[𝑗 / 𝑥]𝜑) | 
| 14 | 7, 13 | dcand 934 | 
. . . . . 6
⊢
((∀𝑥 ∈
ℕ DECID 𝜑 ∧ 𝑗 ∈ ℕ) → DECID
(𝑗 ∈ ℕ ∧
[𝑗 / 𝑥]𝜑)) | 
| 15 |   | nfcv 2339 | 
. . . . . . . 8
⊢
Ⅎ𝑥𝑗 | 
| 16 |   | nfcv 2339 | 
. . . . . . . 8
⊢
Ⅎ𝑥ℕ | 
| 17 | 15, 16, 8, 10 | elrabf 2918 | 
. . . . . . 7
⊢ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝑗 ∈ ℕ ∧ [𝑗 / 𝑥]𝜑)) | 
| 18 | 17 | dcbii 841 | 
. . . . . 6
⊢
(DECID 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ DECID (𝑗 ∈ ℕ ∧ [𝑗 / 𝑥]𝜑)) | 
| 19 | 14, 18 | sylibr 134 | 
. . . . 5
⊢
((∀𝑥 ∈
ℕ DECID 𝜑 ∧ 𝑗 ∈ ℕ) → DECID
𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝜑}) | 
| 20 | 19 | ralrimiva 2570 | 
. . . 4
⊢
(∀𝑥 ∈
ℕ DECID 𝜑 → ∀𝑗 ∈ ℕ DECID 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝜑}) | 
| 21 | 4, 20 | anim12i 338 | 
. . 3
⊢
((∃𝑥 ∈
ℕ 𝜑 ∧ ∀𝑥 ∈ ℕ
DECID 𝜑)
→ (({𝑥 ∈ ℕ
∣ 𝜑} ⊆ ℕ
∧ ∃𝑤 𝑤 ∈ {𝑥 ∈ ℕ ∣ 𝜑}) ∧ ∀𝑗 ∈ ℕ DECID 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝜑})) | 
| 22 |   | df-3an 982 | 
. . 3
⊢ (({𝑥 ∈ ℕ ∣ 𝜑} ⊆ ℕ ∧
∃𝑤 𝑤 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑗 ∈ ℕ DECID 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝜑}) ↔ (({𝑥 ∈ ℕ ∣ 𝜑} ⊆ ℕ ∧ ∃𝑤 𝑤 ∈ {𝑥 ∈ ℕ ∣ 𝜑}) ∧ ∀𝑗 ∈ ℕ DECID 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝜑})) | 
| 23 | 21, 22 | sylibr 134 | 
. 2
⊢
((∃𝑥 ∈
ℕ 𝜑 ∧ ∀𝑥 ∈ ℕ
DECID 𝜑)
→ ({𝑥 ∈ ℕ
∣ 𝜑} ⊆ ℕ
∧ ∃𝑤 𝑤 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑗 ∈ ℕ DECID 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝜑})) | 
| 24 |   | nfrab1 2677 | 
. . . 4
⊢
Ⅎ𝑥{𝑥 ∈ ℕ ∣ 𝜑} | 
| 25 |   | nfcv 2339 | 
. . . 4
⊢
Ⅎ𝑦{𝑥 ∈ ℕ ∣ 𝜑} | 
| 26 | 24, 25 | nnwofdc 12205 | 
. . 3
⊢ (({𝑥 ∈ ℕ ∣ 𝜑} ⊆ ℕ ∧
∃𝑤 𝑤 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑗 ∈ ℕ DECID 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝜑}) → ∃𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑}∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥 ≤ 𝑦) | 
| 27 |   | df-rex 2481 | 
. . . 4
⊢
(∃𝑥 ∈
{𝑥 ∈ ℕ ∣
𝜑}∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥 ≤ 𝑦 ↔ ∃𝑥(𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥 ≤ 𝑦)) | 
| 28 |   | rabid 2673 | 
. . . . . 6
⊢ (𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝑥 ∈ ℕ ∧ 𝜑)) | 
| 29 |   | df-ral 2480 | 
. . . . . . 7
⊢
(∀𝑦 ∈
{𝑥 ∈ ℕ ∣
𝜑}𝑥 ≤ 𝑦 ↔ ∀𝑦(𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → 𝑥 ≤ 𝑦)) | 
| 30 |   | nnwos.1 | 
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | 
| 31 | 30, 30, 30 | 3bitr2d 216 | 
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | 
| 32 | 31 | elrab 2920 | 
. . . . . . . . . 10
⊢ (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝑦 ∈ ℕ ∧ 𝜓)) | 
| 33 | 32 | imbi1i 238 | 
. . . . . . . . 9
⊢ ((𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → 𝑥 ≤ 𝑦) ↔ ((𝑦 ∈ ℕ ∧ 𝜓) → 𝑥 ≤ 𝑦)) | 
| 34 |   | impexp 263 | 
. . . . . . . . 9
⊢ (((𝑦 ∈ ℕ ∧ 𝜓) → 𝑥 ≤ 𝑦) ↔ (𝑦 ∈ ℕ → (𝜓 → 𝑥 ≤ 𝑦))) | 
| 35 | 33, 34 | bitri 184 | 
. . . . . . . 8
⊢ ((𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → 𝑥 ≤ 𝑦) ↔ (𝑦 ∈ ℕ → (𝜓 → 𝑥 ≤ 𝑦))) | 
| 36 | 35 | albii 1484 | 
. . . . . . 7
⊢
(∀𝑦(𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → 𝑥 ≤ 𝑦) ↔ ∀𝑦(𝑦 ∈ ℕ → (𝜓 → 𝑥 ≤ 𝑦))) | 
| 37 | 29, 36 | bitri 184 | 
. . . . . 6
⊢
(∀𝑦 ∈
{𝑥 ∈ ℕ ∣
𝜑}𝑥 ≤ 𝑦 ↔ ∀𝑦(𝑦 ∈ ℕ → (𝜓 → 𝑥 ≤ 𝑦))) | 
| 38 | 28, 37 | anbi12i 460 | 
. . . . 5
⊢ ((𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥 ≤ 𝑦) ↔ ((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓 → 𝑥 ≤ 𝑦)))) | 
| 39 | 38 | exbii 1619 | 
. . . 4
⊢
(∃𝑥(𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥 ≤ 𝑦) ↔ ∃𝑥((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓 → 𝑥 ≤ 𝑦)))) | 
| 40 |   | df-ral 2480 | 
. . . . . . . 8
⊢
(∀𝑦 ∈
ℕ (𝜓 → 𝑥 ≤ 𝑦) ↔ ∀𝑦(𝑦 ∈ ℕ → (𝜓 → 𝑥 ≤ 𝑦))) | 
| 41 | 40 | anbi2i 457 | 
. . . . . . 7
⊢ (((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦 ∈ ℕ (𝜓 → 𝑥 ≤ 𝑦)) ↔ ((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓 → 𝑥 ≤ 𝑦)))) | 
| 42 |   | anass 401 | 
. . . . . . 7
⊢ (((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦 ∈ ℕ (𝜓 → 𝑥 ≤ 𝑦)) ↔ (𝑥 ∈ ℕ ∧ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓 → 𝑥 ≤ 𝑦)))) | 
| 43 | 41, 42 | bitr3i 186 | 
. . . . . 6
⊢ (((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓 → 𝑥 ≤ 𝑦))) ↔ (𝑥 ∈ ℕ ∧ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓 → 𝑥 ≤ 𝑦)))) | 
| 44 | 43 | exbii 1619 | 
. . . . 5
⊢
(∃𝑥((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓 → 𝑥 ≤ 𝑦))) ↔ ∃𝑥(𝑥 ∈ ℕ ∧ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓 → 𝑥 ≤ 𝑦)))) | 
| 45 |   | df-rex 2481 | 
. . . . 5
⊢
(∃𝑥 ∈
ℕ (𝜑 ∧
∀𝑦 ∈ ℕ
(𝜓 → 𝑥 ≤ 𝑦)) ↔ ∃𝑥(𝑥 ∈ ℕ ∧ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓 → 𝑥 ≤ 𝑦)))) | 
| 46 | 44, 45 | bitr4i 187 | 
. . . 4
⊢
(∃𝑥((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓 → 𝑥 ≤ 𝑦))) ↔ ∃𝑥 ∈ ℕ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓 → 𝑥 ≤ 𝑦))) | 
| 47 | 27, 39, 46 | 3bitri 206 | 
. . 3
⊢
(∃𝑥 ∈
{𝑥 ∈ ℕ ∣
𝜑}∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥 ≤ 𝑦 ↔ ∃𝑥 ∈ ℕ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓 → 𝑥 ≤ 𝑦))) | 
| 48 | 26, 47 | sylib 122 | 
. 2
⊢ (({𝑥 ∈ ℕ ∣ 𝜑} ⊆ ℕ ∧
∃𝑤 𝑤 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑗 ∈ ℕ DECID 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝜑}) → ∃𝑥 ∈ ℕ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓 → 𝑥 ≤ 𝑦))) | 
| 49 | 23, 48 | syl 14 | 
1
⊢
((∃𝑥 ∈
ℕ 𝜑 ∧ ∀𝑥 ∈ ℕ
DECID 𝜑)
→ ∃𝑥 ∈
ℕ (𝜑 ∧
∀𝑦 ∈ ℕ
(𝜓 → 𝑥 ≤ 𝑦))) |