ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnwosdc GIF version

Theorem nnwosdc 11968
Description: Well-ordering principle: any inhabited decidable set of positive integers has a least element (schema form). (Contributed by NM, 17-Aug-2001.) (Revised by Jim Kingdon, 25-Oct-2024.)
Hypothesis
Ref Expression
nnwos.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
nnwosdc ((∃𝑥 ∈ ℕ 𝜑 ∧ ∀𝑥 ∈ ℕ DECID 𝜑) → ∃𝑥 ∈ ℕ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦)))
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem nnwosdc
Dummy variables 𝑗 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rabn0m 3435 . . . . 5 (∃𝑤 𝑤 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ ∃𝑥 ∈ ℕ 𝜑)
2 ssrab2 3226 . . . . . 6 {𝑥 ∈ ℕ ∣ 𝜑} ⊆ ℕ
32biantrur 301 . . . . 5 (∃𝑤 𝑤 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ ({𝑥 ∈ ℕ ∣ 𝜑} ⊆ ℕ ∧ ∃𝑤 𝑤 ∈ {𝑥 ∈ ℕ ∣ 𝜑}))
41, 3sylbb1 136 . . . 4 (∃𝑥 ∈ ℕ 𝜑 → ({𝑥 ∈ ℕ ∣ 𝜑} ⊆ ℕ ∧ ∃𝑤 𝑤 ∈ {𝑥 ∈ ℕ ∣ 𝜑}))
5 animorrl 816 . . . . . . . 8 ((∀𝑥 ∈ ℕ DECID 𝜑𝑗 ∈ ℕ) → (𝑗 ∈ ℕ ∨ ¬ 𝑗 ∈ ℕ))
6 df-dc 825 . . . . . . . 8 (DECID 𝑗 ∈ ℕ ↔ (𝑗 ∈ ℕ ∨ ¬ 𝑗 ∈ ℕ))
75, 6sylibr 133 . . . . . . 7 ((∀𝑥 ∈ ℕ DECID 𝜑𝑗 ∈ ℕ) → DECID 𝑗 ∈ ℕ)
8 nfs1v 1927 . . . . . . . . . 10 𝑥[𝑗 / 𝑥]𝜑
98nfdc 1647 . . . . . . . . 9 𝑥DECID [𝑗 / 𝑥]𝜑
10 sbequ12 1759 . . . . . . . . . 10 (𝑥 = 𝑗 → (𝜑 ↔ [𝑗 / 𝑥]𝜑))
1110dcbid 828 . . . . . . . . 9 (𝑥 = 𝑗 → (DECID 𝜑DECID [𝑗 / 𝑥]𝜑))
129, 11rspc 2823 . . . . . . . 8 (𝑗 ∈ ℕ → (∀𝑥 ∈ ℕ DECID 𝜑DECID [𝑗 / 𝑥]𝜑))
1312impcom 124 . . . . . . 7 ((∀𝑥 ∈ ℕ DECID 𝜑𝑗 ∈ ℕ) → DECID [𝑗 / 𝑥]𝜑)
14 dcan2 924 . . . . . . 7 (DECID 𝑗 ∈ ℕ → (DECID [𝑗 / 𝑥]𝜑DECID (𝑗 ∈ ℕ ∧ [𝑗 / 𝑥]𝜑)))
157, 13, 14sylc 62 . . . . . 6 ((∀𝑥 ∈ ℕ DECID 𝜑𝑗 ∈ ℕ) → DECID (𝑗 ∈ ℕ ∧ [𝑗 / 𝑥]𝜑))
16 nfcv 2307 . . . . . . . 8 𝑥𝑗
17 nfcv 2307 . . . . . . . 8 𝑥
1816, 17, 8, 10elrabf 2879 . . . . . . 7 (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝑗 ∈ ℕ ∧ [𝑗 / 𝑥]𝜑))
1918dcbii 830 . . . . . 6 (DECID 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ DECID (𝑗 ∈ ℕ ∧ [𝑗 / 𝑥]𝜑))
2015, 19sylibr 133 . . . . 5 ((∀𝑥 ∈ ℕ DECID 𝜑𝑗 ∈ ℕ) → DECID 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝜑})
2120ralrimiva 2538 . . . 4 (∀𝑥 ∈ ℕ DECID 𝜑 → ∀𝑗 ∈ ℕ DECID 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝜑})
224, 21anim12i 336 . . 3 ((∃𝑥 ∈ ℕ 𝜑 ∧ ∀𝑥 ∈ ℕ DECID 𝜑) → (({𝑥 ∈ ℕ ∣ 𝜑} ⊆ ℕ ∧ ∃𝑤 𝑤 ∈ {𝑥 ∈ ℕ ∣ 𝜑}) ∧ ∀𝑗 ∈ ℕ DECID 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝜑}))
23 df-3an 970 . . 3 (({𝑥 ∈ ℕ ∣ 𝜑} ⊆ ℕ ∧ ∃𝑤 𝑤 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑗 ∈ ℕ DECID 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝜑}) ↔ (({𝑥 ∈ ℕ ∣ 𝜑} ⊆ ℕ ∧ ∃𝑤 𝑤 ∈ {𝑥 ∈ ℕ ∣ 𝜑}) ∧ ∀𝑗 ∈ ℕ DECID 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝜑}))
2422, 23sylibr 133 . 2 ((∃𝑥 ∈ ℕ 𝜑 ∧ ∀𝑥 ∈ ℕ DECID 𝜑) → ({𝑥 ∈ ℕ ∣ 𝜑} ⊆ ℕ ∧ ∃𝑤 𝑤 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑗 ∈ ℕ DECID 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝜑}))
25 nfrab1 2644 . . . 4 𝑥{𝑥 ∈ ℕ ∣ 𝜑}
26 nfcv 2307 . . . 4 𝑦{𝑥 ∈ ℕ ∣ 𝜑}
2725, 26nnwofdc 11967 . . 3 (({𝑥 ∈ ℕ ∣ 𝜑} ⊆ ℕ ∧ ∃𝑤 𝑤 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑗 ∈ ℕ DECID 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝜑}) → ∃𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑}∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥𝑦)
28 df-rex 2449 . . . 4 (∃𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑}∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥𝑦 ↔ ∃𝑥(𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥𝑦))
29 rabid 2640 . . . . . 6 (𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝑥 ∈ ℕ ∧ 𝜑))
30 df-ral 2448 . . . . . . 7 (∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥𝑦 ↔ ∀𝑦(𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → 𝑥𝑦))
31 nnwos.1 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝜑𝜓))
3231elrab 2881 . . . . . . . . . 10 (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝑦 ∈ ℕ ∧ 𝜓))
3332imbi1i 237 . . . . . . . . 9 ((𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → 𝑥𝑦) ↔ ((𝑦 ∈ ℕ ∧ 𝜓) → 𝑥𝑦))
34 impexp 261 . . . . . . . . 9 (((𝑦 ∈ ℕ ∧ 𝜓) → 𝑥𝑦) ↔ (𝑦 ∈ ℕ → (𝜓𝑥𝑦)))
3533, 34bitri 183 . . . . . . . 8 ((𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → 𝑥𝑦) ↔ (𝑦 ∈ ℕ → (𝜓𝑥𝑦)))
3635albii 1458 . . . . . . 7 (∀𝑦(𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → 𝑥𝑦) ↔ ∀𝑦(𝑦 ∈ ℕ → (𝜓𝑥𝑦)))
3730, 36bitri 183 . . . . . 6 (∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥𝑦 ↔ ∀𝑦(𝑦 ∈ ℕ → (𝜓𝑥𝑦)))
3829, 37anbi12i 456 . . . . 5 ((𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥𝑦) ↔ ((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓𝑥𝑦))))
3938exbii 1593 . . . 4 (∃𝑥(𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥𝑦) ↔ ∃𝑥((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓𝑥𝑦))))
40 df-ral 2448 . . . . . . . 8 (∀𝑦 ∈ ℕ (𝜓𝑥𝑦) ↔ ∀𝑦(𝑦 ∈ ℕ → (𝜓𝑥𝑦)))
4140anbi2i 453 . . . . . . 7 (((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦)) ↔ ((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓𝑥𝑦))))
42 anass 399 . . . . . . 7 (((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦)) ↔ (𝑥 ∈ ℕ ∧ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦))))
4341, 42bitr3i 185 . . . . . 6 (((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓𝑥𝑦))) ↔ (𝑥 ∈ ℕ ∧ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦))))
4443exbii 1593 . . . . 5 (∃𝑥((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓𝑥𝑦))) ↔ ∃𝑥(𝑥 ∈ ℕ ∧ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦))))
45 df-rex 2449 . . . . 5 (∃𝑥 ∈ ℕ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦)) ↔ ∃𝑥(𝑥 ∈ ℕ ∧ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦))))
4644, 45bitr4i 186 . . . 4 (∃𝑥((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓𝑥𝑦))) ↔ ∃𝑥 ∈ ℕ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦)))
4728, 39, 463bitri 205 . . 3 (∃𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑}∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥𝑦 ↔ ∃𝑥 ∈ ℕ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦)))
4827, 47sylib 121 . 2 (({𝑥 ∈ ℕ ∣ 𝜑} ⊆ ℕ ∧ ∃𝑤 𝑤 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑗 ∈ ℕ DECID 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝜑}) → ∃𝑥 ∈ ℕ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦)))
4924, 48syl 14 1 ((∃𝑥 ∈ ℕ 𝜑 ∧ ∀𝑥 ∈ ℕ DECID 𝜑) → ∃𝑥 ∈ ℕ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  DECID wdc 824  w3a 968  wal 1341  wex 1480  [wsb 1750  wcel 2136  wral 2443  wrex 2444  {crab 2447  wss 3115   class class class wbr 3981  cle 7930  cn 8853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4099  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-setind 4513  ax-cnex 7840  ax-resscn 7841  ax-1cn 7842  ax-1re 7843  ax-icn 7844  ax-addcl 7845  ax-addrcl 7846  ax-mulcl 7847  ax-addcom 7849  ax-addass 7851  ax-distr 7853  ax-i2m1 7854  ax-0lt1 7855  ax-0id 7857  ax-rnegex 7858  ax-cnre 7860  ax-pre-ltirr 7861  ax-pre-ltwlin 7862  ax-pre-lttrn 7863  ax-pre-apti 7864  ax-pre-ltadd 7865
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-nel 2431  df-ral 2448  df-rex 2449  df-reu 2450  df-rmo 2451  df-rab 2452  df-v 2727  df-sbc 2951  df-csb 3045  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-int 3824  df-iun 3867  df-br 3982  df-opab 4043  df-mpt 4044  df-id 4270  df-po 4273  df-iso 4274  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616  df-iota 5152  df-fun 5189  df-fn 5190  df-f 5191  df-f1 5192  df-fo 5193  df-f1o 5194  df-fv 5195  df-isom 5196  df-riota 5797  df-ov 5844  df-oprab 5845  df-mpo 5846  df-1st 6105  df-2nd 6106  df-sup 6945  df-inf 6946  df-pnf 7931  df-mnf 7932  df-xr 7933  df-ltxr 7934  df-le 7935  df-sub 8067  df-neg 8068  df-inn 8854  df-n0 9111  df-z 9188  df-uz 9463  df-fz 9941  df-fzo 10074
This theorem is referenced by:  infpnlem2  12286
  Copyright terms: Public domain W3C validator