![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biimpri | GIF version |
Description: Infer a converse implication from a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 16-Sep-2013.) |
Ref | Expression |
---|---|
biimpri.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
biimpri | ⊢ (𝜓 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimpri.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | bicomi 131 | . 2 ⊢ (𝜓 ↔ 𝜑) |
3 | 2 | biimpi 119 | 1 ⊢ (𝜓 → 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: sylibr 133 sylbir 134 sylbbr 135 sylbb1 136 sylbb2 137 mpbir 145 syl5bir 152 syl6ibr 161 bitri 183 sylanbr 281 sylan2br 284 simplbi2 380 sylanblrc 410 mtbi 636 pm3.44 676 orbi2i 720 pm2.31 726 dcor 887 rnlem 928 syl3an1br 1223 syl3an2br 1224 syl3an3br 1225 xorbin 1330 3impexpbicom 1382 equveli 1700 sbbii 1706 dveeq2or 1755 exmoeudc 2023 eueq2dc 2810 ralun 3205 undif3ss 3284 ssunieq 3716 a9evsep 3990 dcextest 4433 tfi 4434 peano5 4450 opelxpi 4509 ndmima 4852 iotass 5041 dffo2 5285 dff1o2 5306 resdif 5323 f1o00 5336 ressnop0 5533 fsnunfv 5553 ovid 5819 ovidig 5820 f1stres 5988 f2ndres 5989 rdgon 6213 elixpsn 6559 diffisn 6716 diffifi 6717 unsnfi 6736 snexxph 6766 ordiso2 6835 omp1eomlem 6894 ltexnqq 7117 enq0sym 7141 prarloclem5 7209 nqprloc 7254 nqprl 7260 nqpru 7261 pitonn 7535 axcnre 7566 peano5nnnn 7577 axcaucvglemres 7584 le2tri3i 7743 muldivdirap 8328 peano5nni 8581 0nn0 8844 uzind4 9233 elfz4 9640 eluzfz 9642 ssfzo12bi 9843 ioom 9879 ser0 10128 exp3vallem 10135 hashinfuni 10364 hashxp 10413 nn0abscl 10697 fimaxre2 10837 iserle 10950 climserle 10953 summodclem2a 10989 fsumcl2lem 11006 fsumadd 11014 sumsnf 11017 isumclim3 11031 isumadd 11039 sumsplitdc 11040 fsummulc2 11056 cvgcmpub 11084 isumshft 11098 isumlessdc 11104 trireciplem 11108 geolim 11119 geo2lim 11124 cvgratz 11140 mertenslem2 11144 mertensabs 11145 ef0lem 11164 efcvgfsum 11171 ege2le3 11175 efcj 11177 efgt1p2 11199 ndvdsadd 11423 gcdsupex 11441 gcdsupcl 11442 ialgrlemconst 11517 divgcdcoprmex 11576 1idssfct 11589 tgcl 12015 txcnp 12221 bj-sucexg 12701 bj-indind 12715 bj-2inf 12721 findset 12728 trilpolemisumle 12815 |
Copyright terms: Public domain | W3C validator |