Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isstructr | GIF version |
Description: The property of being a structure with components in 𝑀...𝑁. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 18-Jan-2023.) |
Ref | Expression |
---|---|
isstructr | ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁) ∧ (Fun (𝐹 ∖ {∅}) ∧ 𝐹 ∈ 𝑉 ∧ dom 𝐹 ⊆ (𝑀...𝑁))) → 𝐹 Struct 〈𝑀, 𝑁〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brinxp2 4671 | . . . 4 ⊢ (𝑀( ≤ ∩ (ℕ × ℕ))𝑁 ↔ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁)) | |
2 | df-br 3983 | . . . 4 ⊢ (𝑀( ≤ ∩ (ℕ × ℕ))𝑁 ↔ 〈𝑀, 𝑁〉 ∈ ( ≤ ∩ (ℕ × ℕ))) | |
3 | 1, 2 | sylbb1 136 | . . 3 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁) → 〈𝑀, 𝑁〉 ∈ ( ≤ ∩ (ℕ × ℕ))) |
4 | 3 | adantr 274 | . 2 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁) ∧ (Fun (𝐹 ∖ {∅}) ∧ 𝐹 ∈ 𝑉 ∧ dom 𝐹 ⊆ (𝑀...𝑁))) → 〈𝑀, 𝑁〉 ∈ ( ≤ ∩ (ℕ × ℕ))) |
5 | simpr1 993 | . 2 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁) ∧ (Fun (𝐹 ∖ {∅}) ∧ 𝐹 ∈ 𝑉 ∧ dom 𝐹 ⊆ (𝑀...𝑁))) → Fun (𝐹 ∖ {∅})) | |
6 | simpr2 994 | . 2 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁) ∧ (Fun (𝐹 ∖ {∅}) ∧ 𝐹 ∈ 𝑉 ∧ dom 𝐹 ⊆ (𝑀...𝑁))) → 𝐹 ∈ 𝑉) | |
7 | df-ov 5845 | . . . . . 6 ⊢ (𝑀...𝑁) = (...‘〈𝑀, 𝑁〉) | |
8 | 7 | sseq2i 3169 | . . . . 5 ⊢ (dom 𝐹 ⊆ (𝑀...𝑁) ↔ dom 𝐹 ⊆ (...‘〈𝑀, 𝑁〉)) |
9 | 8 | biimpi 119 | . . . 4 ⊢ (dom 𝐹 ⊆ (𝑀...𝑁) → dom 𝐹 ⊆ (...‘〈𝑀, 𝑁〉)) |
10 | 9 | 3ad2ant3 1010 | . . 3 ⊢ ((Fun (𝐹 ∖ {∅}) ∧ 𝐹 ∈ 𝑉 ∧ dom 𝐹 ⊆ (𝑀...𝑁)) → dom 𝐹 ⊆ (...‘〈𝑀, 𝑁〉)) |
11 | 10 | adantl 275 | . 2 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁) ∧ (Fun (𝐹 ∖ {∅}) ∧ 𝐹 ∈ 𝑉 ∧ dom 𝐹 ⊆ (𝑀...𝑁))) → dom 𝐹 ⊆ (...‘〈𝑀, 𝑁〉)) |
12 | isstruct2r 12405 | . 2 ⊢ (((〈𝑀, 𝑁〉 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅})) ∧ (𝐹 ∈ 𝑉 ∧ dom 𝐹 ⊆ (...‘〈𝑀, 𝑁〉))) → 𝐹 Struct 〈𝑀, 𝑁〉) | |
13 | 4, 5, 6, 11, 12 | syl22anc 1229 | 1 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁) ∧ (Fun (𝐹 ∖ {∅}) ∧ 𝐹 ∈ 𝑉 ∧ dom 𝐹 ⊆ (𝑀...𝑁))) → 𝐹 Struct 〈𝑀, 𝑁〉) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 968 ∈ wcel 2136 ∖ cdif 3113 ∩ cin 3115 ⊆ wss 3116 ∅c0 3409 {csn 3576 〈cop 3579 class class class wbr 3982 × cxp 4602 dom cdm 4604 Fun wfun 5182 ‘cfv 5188 (class class class)co 5842 ≤ cle 7934 ℕcn 8857 ...cfz 9944 Struct cstr 12390 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-ov 5845 df-struct 12396 |
This theorem is referenced by: strleund 12483 strleun 12484 strle1g 12485 |
Copyright terms: Public domain | W3C validator |