| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isstructr | GIF version | ||
| Description: The property of being a structure with components in 𝑀...𝑁. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 18-Jan-2023.) |
| Ref | Expression |
|---|---|
| isstructr | ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁) ∧ (Fun (𝐹 ∖ {∅}) ∧ 𝐹 ∈ 𝑉 ∧ dom 𝐹 ⊆ (𝑀...𝑁))) → 𝐹 Struct 〈𝑀, 𝑁〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brinxp2 4763 | . . . 4 ⊢ (𝑀( ≤ ∩ (ℕ × ℕ))𝑁 ↔ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁)) | |
| 2 | df-br 4063 | . . . 4 ⊢ (𝑀( ≤ ∩ (ℕ × ℕ))𝑁 ↔ 〈𝑀, 𝑁〉 ∈ ( ≤ ∩ (ℕ × ℕ))) | |
| 3 | 1, 2 | sylbb1 137 | . . 3 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁) → 〈𝑀, 𝑁〉 ∈ ( ≤ ∩ (ℕ × ℕ))) |
| 4 | 3 | adantr 276 | . 2 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁) ∧ (Fun (𝐹 ∖ {∅}) ∧ 𝐹 ∈ 𝑉 ∧ dom 𝐹 ⊆ (𝑀...𝑁))) → 〈𝑀, 𝑁〉 ∈ ( ≤ ∩ (ℕ × ℕ))) |
| 5 | simpr1 1008 | . 2 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁) ∧ (Fun (𝐹 ∖ {∅}) ∧ 𝐹 ∈ 𝑉 ∧ dom 𝐹 ⊆ (𝑀...𝑁))) → Fun (𝐹 ∖ {∅})) | |
| 6 | simpr2 1009 | . 2 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁) ∧ (Fun (𝐹 ∖ {∅}) ∧ 𝐹 ∈ 𝑉 ∧ dom 𝐹 ⊆ (𝑀...𝑁))) → 𝐹 ∈ 𝑉) | |
| 7 | df-ov 5977 | . . . . . 6 ⊢ (𝑀...𝑁) = (...‘〈𝑀, 𝑁〉) | |
| 8 | 7 | sseq2i 3231 | . . . . 5 ⊢ (dom 𝐹 ⊆ (𝑀...𝑁) ↔ dom 𝐹 ⊆ (...‘〈𝑀, 𝑁〉)) |
| 9 | 8 | biimpi 120 | . . . 4 ⊢ (dom 𝐹 ⊆ (𝑀...𝑁) → dom 𝐹 ⊆ (...‘〈𝑀, 𝑁〉)) |
| 10 | 9 | 3ad2ant3 1025 | . . 3 ⊢ ((Fun (𝐹 ∖ {∅}) ∧ 𝐹 ∈ 𝑉 ∧ dom 𝐹 ⊆ (𝑀...𝑁)) → dom 𝐹 ⊆ (...‘〈𝑀, 𝑁〉)) |
| 11 | 10 | adantl 277 | . 2 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁) ∧ (Fun (𝐹 ∖ {∅}) ∧ 𝐹 ∈ 𝑉 ∧ dom 𝐹 ⊆ (𝑀...𝑁))) → dom 𝐹 ⊆ (...‘〈𝑀, 𝑁〉)) |
| 12 | isstruct2r 13009 | . 2 ⊢ (((〈𝑀, 𝑁〉 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅})) ∧ (𝐹 ∈ 𝑉 ∧ dom 𝐹 ⊆ (...‘〈𝑀, 𝑁〉))) → 𝐹 Struct 〈𝑀, 𝑁〉) | |
| 13 | 4, 5, 6, 11, 12 | syl22anc 1253 | 1 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁) ∧ (Fun (𝐹 ∖ {∅}) ∧ 𝐹 ∈ 𝑉 ∧ dom 𝐹 ⊆ (𝑀...𝑁))) → 𝐹 Struct 〈𝑀, 𝑁〉) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 983 ∈ wcel 2180 ∖ cdif 3174 ∩ cin 3176 ⊆ wss 3177 ∅c0 3471 {csn 3646 〈cop 3649 class class class wbr 4062 × cxp 4694 dom cdm 4696 Fun wfun 5288 ‘cfv 5294 (class class class)co 5974 ≤ cle 8150 ℕcn 9078 ...cfz 10172 Struct cstr 12994 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-rab 2497 df-v 2781 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-iota 5254 df-fun 5296 df-fv 5302 df-ov 5977 df-struct 13000 |
| This theorem is referenced by: strleund 13102 strleun 13103 strext 13104 strle1g 13105 |
| Copyright terms: Public domain | W3C validator |