Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isstructr | GIF version |
Description: The property of being a structure with components in 𝑀...𝑁. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 18-Jan-2023.) |
Ref | Expression |
---|---|
isstructr | ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁) ∧ (Fun (𝐹 ∖ {∅}) ∧ 𝐹 ∈ 𝑉 ∧ dom 𝐹 ⊆ (𝑀...𝑁))) → 𝐹 Struct 〈𝑀, 𝑁〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brinxp2 4678 | . . . 4 ⊢ (𝑀( ≤ ∩ (ℕ × ℕ))𝑁 ↔ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁)) | |
2 | df-br 3990 | . . . 4 ⊢ (𝑀( ≤ ∩ (ℕ × ℕ))𝑁 ↔ 〈𝑀, 𝑁〉 ∈ ( ≤ ∩ (ℕ × ℕ))) | |
3 | 1, 2 | sylbb1 136 | . . 3 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁) → 〈𝑀, 𝑁〉 ∈ ( ≤ ∩ (ℕ × ℕ))) |
4 | 3 | adantr 274 | . 2 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁) ∧ (Fun (𝐹 ∖ {∅}) ∧ 𝐹 ∈ 𝑉 ∧ dom 𝐹 ⊆ (𝑀...𝑁))) → 〈𝑀, 𝑁〉 ∈ ( ≤ ∩ (ℕ × ℕ))) |
5 | simpr1 998 | . 2 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁) ∧ (Fun (𝐹 ∖ {∅}) ∧ 𝐹 ∈ 𝑉 ∧ dom 𝐹 ⊆ (𝑀...𝑁))) → Fun (𝐹 ∖ {∅})) | |
6 | simpr2 999 | . 2 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁) ∧ (Fun (𝐹 ∖ {∅}) ∧ 𝐹 ∈ 𝑉 ∧ dom 𝐹 ⊆ (𝑀...𝑁))) → 𝐹 ∈ 𝑉) | |
7 | df-ov 5856 | . . . . . 6 ⊢ (𝑀...𝑁) = (...‘〈𝑀, 𝑁〉) | |
8 | 7 | sseq2i 3174 | . . . . 5 ⊢ (dom 𝐹 ⊆ (𝑀...𝑁) ↔ dom 𝐹 ⊆ (...‘〈𝑀, 𝑁〉)) |
9 | 8 | biimpi 119 | . . . 4 ⊢ (dom 𝐹 ⊆ (𝑀...𝑁) → dom 𝐹 ⊆ (...‘〈𝑀, 𝑁〉)) |
10 | 9 | 3ad2ant3 1015 | . . 3 ⊢ ((Fun (𝐹 ∖ {∅}) ∧ 𝐹 ∈ 𝑉 ∧ dom 𝐹 ⊆ (𝑀...𝑁)) → dom 𝐹 ⊆ (...‘〈𝑀, 𝑁〉)) |
11 | 10 | adantl 275 | . 2 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁) ∧ (Fun (𝐹 ∖ {∅}) ∧ 𝐹 ∈ 𝑉 ∧ dom 𝐹 ⊆ (𝑀...𝑁))) → dom 𝐹 ⊆ (...‘〈𝑀, 𝑁〉)) |
12 | isstruct2r 12427 | . 2 ⊢ (((〈𝑀, 𝑁〉 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅})) ∧ (𝐹 ∈ 𝑉 ∧ dom 𝐹 ⊆ (...‘〈𝑀, 𝑁〉))) → 𝐹 Struct 〈𝑀, 𝑁〉) | |
13 | 4, 5, 6, 11, 12 | syl22anc 1234 | 1 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁) ∧ (Fun (𝐹 ∖ {∅}) ∧ 𝐹 ∈ 𝑉 ∧ dom 𝐹 ⊆ (𝑀...𝑁))) → 𝐹 Struct 〈𝑀, 𝑁〉) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 973 ∈ wcel 2141 ∖ cdif 3118 ∩ cin 3120 ⊆ wss 3121 ∅c0 3414 {csn 3583 〈cop 3586 class class class wbr 3989 × cxp 4609 dom cdm 4611 Fun wfun 5192 ‘cfv 5198 (class class class)co 5853 ≤ cle 7955 ℕcn 8878 ...cfz 9965 Struct cstr 12412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-ov 5856 df-struct 12418 |
This theorem is referenced by: strleund 12506 strleun 12507 strle1g 12508 |
Copyright terms: Public domain | W3C validator |