ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isstructr GIF version

Theorem isstructr 13055
Description: The property of being a structure with components in 𝑀...𝑁. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 18-Jan-2023.)
Assertion
Ref Expression
isstructr (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ (Fun (𝐹 ∖ {∅}) ∧ 𝐹𝑉 ∧ dom 𝐹 ⊆ (𝑀...𝑁))) → 𝐹 Struct ⟨𝑀, 𝑁⟩)

Proof of Theorem isstructr
StepHypRef Expression
1 brinxp2 4786 . . . 4 (𝑀( ≤ ∩ (ℕ × ℕ))𝑁 ↔ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁))
2 df-br 4084 . . . 4 (𝑀( ≤ ∩ (ℕ × ℕ))𝑁 ↔ ⟨𝑀, 𝑁⟩ ∈ ( ≤ ∩ (ℕ × ℕ)))
31, 2sylbb1 137 . . 3 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) → ⟨𝑀, 𝑁⟩ ∈ ( ≤ ∩ (ℕ × ℕ)))
43adantr 276 . 2 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ (Fun (𝐹 ∖ {∅}) ∧ 𝐹𝑉 ∧ dom 𝐹 ⊆ (𝑀...𝑁))) → ⟨𝑀, 𝑁⟩ ∈ ( ≤ ∩ (ℕ × ℕ)))
5 simpr1 1027 . 2 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ (Fun (𝐹 ∖ {∅}) ∧ 𝐹𝑉 ∧ dom 𝐹 ⊆ (𝑀...𝑁))) → Fun (𝐹 ∖ {∅}))
6 simpr2 1028 . 2 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ (Fun (𝐹 ∖ {∅}) ∧ 𝐹𝑉 ∧ dom 𝐹 ⊆ (𝑀...𝑁))) → 𝐹𝑉)
7 df-ov 6010 . . . . . 6 (𝑀...𝑁) = (...‘⟨𝑀, 𝑁⟩)
87sseq2i 3251 . . . . 5 (dom 𝐹 ⊆ (𝑀...𝑁) ↔ dom 𝐹 ⊆ (...‘⟨𝑀, 𝑁⟩))
98biimpi 120 . . . 4 (dom 𝐹 ⊆ (𝑀...𝑁) → dom 𝐹 ⊆ (...‘⟨𝑀, 𝑁⟩))
1093ad2ant3 1044 . . 3 ((Fun (𝐹 ∖ {∅}) ∧ 𝐹𝑉 ∧ dom 𝐹 ⊆ (𝑀...𝑁)) → dom 𝐹 ⊆ (...‘⟨𝑀, 𝑁⟩))
1110adantl 277 . 2 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ (Fun (𝐹 ∖ {∅}) ∧ 𝐹𝑉 ∧ dom 𝐹 ⊆ (𝑀...𝑁))) → dom 𝐹 ⊆ (...‘⟨𝑀, 𝑁⟩))
12 isstruct2r 13051 . 2 (((⟨𝑀, 𝑁⟩ ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅})) ∧ (𝐹𝑉 ∧ dom 𝐹 ⊆ (...‘⟨𝑀, 𝑁⟩))) → 𝐹 Struct ⟨𝑀, 𝑁⟩)
134, 5, 6, 11, 12syl22anc 1272 1 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ (Fun (𝐹 ∖ {∅}) ∧ 𝐹𝑉 ∧ dom 𝐹 ⊆ (𝑀...𝑁))) → 𝐹 Struct ⟨𝑀, 𝑁⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002  wcel 2200  cdif 3194  cin 3196  wss 3197  c0 3491  {csn 3666  cop 3669   class class class wbr 4083   × cxp 4717  dom cdm 4719  Fun wfun 5312  cfv 5318  (class class class)co 6007  cle 8190  cn 9118  ...cfz 10212   Struct cstr 13036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-ov 6010  df-struct 13042
This theorem is referenced by:  strleund  13144  strleun  13145  strext  13146  strle1g  13147
  Copyright terms: Public domain W3C validator