ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ontri2orexmidim GIF version

Theorem ontri2orexmidim 4633
Description: Ordinal trichotomy implies excluded middle. Closed form of ordtri2or2exmid 4632. (Contributed by Jim Kingdon, 26-Aug-2024.)
Assertion
Ref Expression
ontri2orexmidim (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥) → DECID 𝜑)
Distinct variable group:   𝜑,𝑥,𝑦

Proof of Theorem ontri2orexmidim
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ordtri2or2exmidlem 4587 . . . . 5 {𝑧 ∈ {∅, {∅}} ∣ 𝜑} ∈ On
2 suc0 4471 . . . . . 6 suc ∅ = {∅}
3 0elon 4452 . . . . . . 7 ∅ ∈ On
43onsuci 4577 . . . . . 6 suc ∅ ∈ On
52, 4eqeltrri 2280 . . . . 5 {∅} ∈ On
6 sseq1 3220 . . . . . . 7 (𝑥 = {𝑧 ∈ {∅, {∅}} ∣ 𝜑} → (𝑥𝑦 ↔ {𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ 𝑦))
7 sseq2 3221 . . . . . . 7 (𝑥 = {𝑧 ∈ {∅, {∅}} ∣ 𝜑} → (𝑦𝑥𝑦 ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑}))
86, 7orbi12d 795 . . . . . 6 (𝑥 = {𝑧 ∈ {∅, {∅}} ∣ 𝜑} → ((𝑥𝑦𝑦𝑥) ↔ ({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ 𝑦𝑦 ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑})))
9 sseq2 3221 . . . . . . 7 (𝑦 = {∅} → ({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ 𝑦 ↔ {𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅}))
10 sseq1 3220 . . . . . . 7 (𝑦 = {∅} → (𝑦 ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑} ↔ {∅} ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑}))
119, 10orbi12d 795 . . . . . 6 (𝑦 = {∅} → (({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ 𝑦𝑦 ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑}) ↔ ({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅} ∨ {∅} ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑})))
128, 11rspc2va 2895 . . . . 5 ((({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ∈ On ∧ {∅} ∈ On) ∧ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥)) → ({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅} ∨ {∅} ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑}))
131, 5, 12mpanl12 436 . . . 4 (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥) → ({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅} ∨ {∅} ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑}))
145onirri 4604 . . . . . 6 ¬ {∅} ∈ {∅}
15 simpl 109 . . . . . . . 8 (({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅} ∧ 𝜑) → {𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅})
16 simpr 110 . . . . . . . . 9 (({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅} ∧ 𝜑) → 𝜑)
17 p0ex 4243 . . . . . . . . . . 11 {∅} ∈ V
1817prid2 3745 . . . . . . . . . 10 {∅} ∈ {∅, {∅}}
19 biidd 172 . . . . . . . . . . 11 (𝑧 = {∅} → (𝜑𝜑))
2019elrab3 2934 . . . . . . . . . 10 ({∅} ∈ {∅, {∅}} → ({∅} ∈ {𝑧 ∈ {∅, {∅}} ∣ 𝜑} ↔ 𝜑))
2118, 20ax-mp 5 . . . . . . . . 9 ({∅} ∈ {𝑧 ∈ {∅, {∅}} ∣ 𝜑} ↔ 𝜑)
2216, 21sylibr 134 . . . . . . . 8 (({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅} ∧ 𝜑) → {∅} ∈ {𝑧 ∈ {∅, {∅}} ∣ 𝜑})
2315, 22sseldd 3198 . . . . . . 7 (({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅} ∧ 𝜑) → {∅} ∈ {∅})
2423ex 115 . . . . . 6 ({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅} → (𝜑 → {∅} ∈ {∅}))
2514, 24mtoi 666 . . . . 5 ({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅} → ¬ 𝜑)
26 snssg 3773 . . . . . . 7 (∅ ∈ On → (∅ ∈ {𝑧 ∈ {∅, {∅}} ∣ 𝜑} ↔ {∅} ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑}))
273, 26ax-mp 5 . . . . . 6 (∅ ∈ {𝑧 ∈ {∅, {∅}} ∣ 𝜑} ↔ {∅} ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑})
28 0ex 4182 . . . . . . . 8 ∅ ∈ V
2928prid1 3744 . . . . . . 7 ∅ ∈ {∅, {∅}}
30 biidd 172 . . . . . . . 8 (𝑧 = ∅ → (𝜑𝜑))
3130elrab3 2934 . . . . . . 7 (∅ ∈ {∅, {∅}} → (∅ ∈ {𝑧 ∈ {∅, {∅}} ∣ 𝜑} ↔ 𝜑))
3229, 31ax-mp 5 . . . . . 6 (∅ ∈ {𝑧 ∈ {∅, {∅}} ∣ 𝜑} ↔ 𝜑)
3327, 32sylbb1 137 . . . . 5 ({∅} ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑} → 𝜑)
3425, 33orim12i 761 . . . 4 (({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅} ∨ {∅} ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑}) → (¬ 𝜑𝜑))
3513, 34syl 14 . . 3 (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥) → (¬ 𝜑𝜑))
3635orcomd 731 . 2 (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥) → (𝜑 ∨ ¬ 𝜑))
37 df-dc 837 . 2 (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑))
3836, 37sylibr 134 1 (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥) → DECID 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  DECID wdc 836   = wceq 1373  wcel 2177  wral 2485  {crab 2489  wss 3170  c0 3464  {csn 3638  {cpr 3639  Oncon0 4423  suc csuc 4425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-uni 3860  df-tr 4154  df-iord 4426  df-on 4428  df-suc 4431
This theorem is referenced by:  exmidontri2or  7384
  Copyright terms: Public domain W3C validator