ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ontri2orexmidim GIF version

Theorem ontri2orexmidim 4531
Description: Ordinal trichotomy implies excluded middle. Closed form of ordtri2or2exmid 4530. (Contributed by Jim Kingdon, 26-Aug-2024.)
Assertion
Ref Expression
ontri2orexmidim (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥) → DECID 𝜑)
Distinct variable group:   𝜑,𝑥,𝑦

Proof of Theorem ontri2orexmidim
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ordtri2or2exmidlem 4485 . . . . 5 {𝑧 ∈ {∅, {∅}} ∣ 𝜑} ∈ On
2 suc0 4371 . . . . . 6 suc ∅ = {∅}
3 0elon 4352 . . . . . . 7 ∅ ∈ On
43onsuci 4475 . . . . . 6 suc ∅ ∈ On
52, 4eqeltrri 2231 . . . . 5 {∅} ∈ On
6 sseq1 3151 . . . . . . 7 (𝑥 = {𝑧 ∈ {∅, {∅}} ∣ 𝜑} → (𝑥𝑦 ↔ {𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ 𝑦))
7 sseq2 3152 . . . . . . 7 (𝑥 = {𝑧 ∈ {∅, {∅}} ∣ 𝜑} → (𝑦𝑥𝑦 ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑}))
86, 7orbi12d 783 . . . . . 6 (𝑥 = {𝑧 ∈ {∅, {∅}} ∣ 𝜑} → ((𝑥𝑦𝑦𝑥) ↔ ({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ 𝑦𝑦 ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑})))
9 sseq2 3152 . . . . . . 7 (𝑦 = {∅} → ({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ 𝑦 ↔ {𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅}))
10 sseq1 3151 . . . . . . 7 (𝑦 = {∅} → (𝑦 ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑} ↔ {∅} ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑}))
119, 10orbi12d 783 . . . . . 6 (𝑦 = {∅} → (({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ 𝑦𝑦 ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑}) ↔ ({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅} ∨ {∅} ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑})))
128, 11rspc2va 2830 . . . . 5 ((({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ∈ On ∧ {∅} ∈ On) ∧ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥)) → ({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅} ∨ {∅} ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑}))
131, 5, 12mpanl12 433 . . . 4 (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥) → ({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅} ∨ {∅} ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑}))
145onirri 4502 . . . . . 6 ¬ {∅} ∈ {∅}
15 simpl 108 . . . . . . . 8 (({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅} ∧ 𝜑) → {𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅})
16 simpr 109 . . . . . . . . 9 (({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅} ∧ 𝜑) → 𝜑)
17 p0ex 4149 . . . . . . . . . . 11 {∅} ∈ V
1817prid2 3666 . . . . . . . . . 10 {∅} ∈ {∅, {∅}}
19 biidd 171 . . . . . . . . . . 11 (𝑧 = {∅} → (𝜑𝜑))
2019elrab3 2869 . . . . . . . . . 10 ({∅} ∈ {∅, {∅}} → ({∅} ∈ {𝑧 ∈ {∅, {∅}} ∣ 𝜑} ↔ 𝜑))
2118, 20ax-mp 5 . . . . . . . . 9 ({∅} ∈ {𝑧 ∈ {∅, {∅}} ∣ 𝜑} ↔ 𝜑)
2216, 21sylibr 133 . . . . . . . 8 (({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅} ∧ 𝜑) → {∅} ∈ {𝑧 ∈ {∅, {∅}} ∣ 𝜑})
2315, 22sseldd 3129 . . . . . . 7 (({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅} ∧ 𝜑) → {∅} ∈ {∅})
2423ex 114 . . . . . 6 ({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅} → (𝜑 → {∅} ∈ {∅}))
2514, 24mtoi 654 . . . . 5 ({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅} → ¬ 𝜑)
26 snssg 3692 . . . . . . 7 (∅ ∈ On → (∅ ∈ {𝑧 ∈ {∅, {∅}} ∣ 𝜑} ↔ {∅} ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑}))
273, 26ax-mp 5 . . . . . 6 (∅ ∈ {𝑧 ∈ {∅, {∅}} ∣ 𝜑} ↔ {∅} ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑})
28 0ex 4091 . . . . . . . 8 ∅ ∈ V
2928prid1 3665 . . . . . . 7 ∅ ∈ {∅, {∅}}
30 biidd 171 . . . . . . . 8 (𝑧 = ∅ → (𝜑𝜑))
3130elrab3 2869 . . . . . . 7 (∅ ∈ {∅, {∅}} → (∅ ∈ {𝑧 ∈ {∅, {∅}} ∣ 𝜑} ↔ 𝜑))
3229, 31ax-mp 5 . . . . . 6 (∅ ∈ {𝑧 ∈ {∅, {∅}} ∣ 𝜑} ↔ 𝜑)
3327, 32sylbb1 136 . . . . 5 ({∅} ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑} → 𝜑)
3425, 33orim12i 749 . . . 4 (({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅} ∨ {∅} ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑}) → (¬ 𝜑𝜑))
3513, 34syl 14 . . 3 (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥) → (¬ 𝜑𝜑))
3635orcomd 719 . 2 (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥) → (𝜑 ∨ ¬ 𝜑))
37 df-dc 821 . 2 (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑))
3836, 37sylibr 133 1 (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥) → DECID 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  DECID wdc 820   = wceq 1335  wcel 2128  wral 2435  {crab 2439  wss 3102  c0 3394  {csn 3560  {cpr 3561  Oncon0 4323  suc csuc 4325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4496
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-uni 3773  df-tr 4063  df-iord 4326  df-on 4328  df-suc 4331
This theorem is referenced by:  exmidontri2or  7178
  Copyright terms: Public domain W3C validator