ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ontri2orexmidim GIF version

Theorem ontri2orexmidim 4546
Description: Ordinal trichotomy implies excluded middle. Closed form of ordtri2or2exmid 4545. (Contributed by Jim Kingdon, 26-Aug-2024.)
Assertion
Ref Expression
ontri2orexmidim (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥) → DECID 𝜑)
Distinct variable group:   𝜑,𝑥,𝑦

Proof of Theorem ontri2orexmidim
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ordtri2or2exmidlem 4500 . . . . 5 {𝑧 ∈ {∅, {∅}} ∣ 𝜑} ∈ On
2 suc0 4386 . . . . . 6 suc ∅ = {∅}
3 0elon 4367 . . . . . . 7 ∅ ∈ On
43onsuci 4490 . . . . . 6 suc ∅ ∈ On
52, 4eqeltrri 2238 . . . . 5 {∅} ∈ On
6 sseq1 3163 . . . . . . 7 (𝑥 = {𝑧 ∈ {∅, {∅}} ∣ 𝜑} → (𝑥𝑦 ↔ {𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ 𝑦))
7 sseq2 3164 . . . . . . 7 (𝑥 = {𝑧 ∈ {∅, {∅}} ∣ 𝜑} → (𝑦𝑥𝑦 ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑}))
86, 7orbi12d 783 . . . . . 6 (𝑥 = {𝑧 ∈ {∅, {∅}} ∣ 𝜑} → ((𝑥𝑦𝑦𝑥) ↔ ({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ 𝑦𝑦 ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑})))
9 sseq2 3164 . . . . . . 7 (𝑦 = {∅} → ({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ 𝑦 ↔ {𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅}))
10 sseq1 3163 . . . . . . 7 (𝑦 = {∅} → (𝑦 ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑} ↔ {∅} ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑}))
119, 10orbi12d 783 . . . . . 6 (𝑦 = {∅} → (({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ 𝑦𝑦 ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑}) ↔ ({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅} ∨ {∅} ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑})))
128, 11rspc2va 2842 . . . . 5 ((({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ∈ On ∧ {∅} ∈ On) ∧ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥)) → ({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅} ∨ {∅} ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑}))
131, 5, 12mpanl12 433 . . . 4 (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥) → ({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅} ∨ {∅} ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑}))
145onirri 4517 . . . . . 6 ¬ {∅} ∈ {∅}
15 simpl 108 . . . . . . . 8 (({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅} ∧ 𝜑) → {𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅})
16 simpr 109 . . . . . . . . 9 (({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅} ∧ 𝜑) → 𝜑)
17 p0ex 4164 . . . . . . . . . . 11 {∅} ∈ V
1817prid2 3680 . . . . . . . . . 10 {∅} ∈ {∅, {∅}}
19 biidd 171 . . . . . . . . . . 11 (𝑧 = {∅} → (𝜑𝜑))
2019elrab3 2881 . . . . . . . . . 10 ({∅} ∈ {∅, {∅}} → ({∅} ∈ {𝑧 ∈ {∅, {∅}} ∣ 𝜑} ↔ 𝜑))
2118, 20ax-mp 5 . . . . . . . . 9 ({∅} ∈ {𝑧 ∈ {∅, {∅}} ∣ 𝜑} ↔ 𝜑)
2216, 21sylibr 133 . . . . . . . 8 (({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅} ∧ 𝜑) → {∅} ∈ {𝑧 ∈ {∅, {∅}} ∣ 𝜑})
2315, 22sseldd 3141 . . . . . . 7 (({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅} ∧ 𝜑) → {∅} ∈ {∅})
2423ex 114 . . . . . 6 ({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅} → (𝜑 → {∅} ∈ {∅}))
2514, 24mtoi 654 . . . . 5 ({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅} → ¬ 𝜑)
26 snssg 3706 . . . . . . 7 (∅ ∈ On → (∅ ∈ {𝑧 ∈ {∅, {∅}} ∣ 𝜑} ↔ {∅} ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑}))
273, 26ax-mp 5 . . . . . 6 (∅ ∈ {𝑧 ∈ {∅, {∅}} ∣ 𝜑} ↔ {∅} ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑})
28 0ex 4106 . . . . . . . 8 ∅ ∈ V
2928prid1 3679 . . . . . . 7 ∅ ∈ {∅, {∅}}
30 biidd 171 . . . . . . . 8 (𝑧 = ∅ → (𝜑𝜑))
3130elrab3 2881 . . . . . . 7 (∅ ∈ {∅, {∅}} → (∅ ∈ {𝑧 ∈ {∅, {∅}} ∣ 𝜑} ↔ 𝜑))
3229, 31ax-mp 5 . . . . . 6 (∅ ∈ {𝑧 ∈ {∅, {∅}} ∣ 𝜑} ↔ 𝜑)
3327, 32sylbb1 136 . . . . 5 ({∅} ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑} → 𝜑)
3425, 33orim12i 749 . . . 4 (({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅} ∨ {∅} ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑}) → (¬ 𝜑𝜑))
3513, 34syl 14 . . 3 (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥) → (¬ 𝜑𝜑))
3635orcomd 719 . 2 (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥) → (𝜑 ∨ ¬ 𝜑))
37 df-dc 825 . 2 (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑))
3836, 37sylibr 133 1 (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥) → DECID 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  DECID wdc 824   = wceq 1342  wcel 2135  wral 2442  {crab 2446  wss 3114  c0 3407  {csn 3573  {cpr 3574  Oncon0 4338  suc csuc 4340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4097  ax-nul 4105  ax-pow 4150  ax-pr 4184  ax-un 4408  ax-setind 4511
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-rab 2451  df-v 2726  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-nul 3408  df-pw 3558  df-sn 3579  df-pr 3580  df-uni 3787  df-tr 4078  df-iord 4341  df-on 4343  df-suc 4346
This theorem is referenced by:  exmidontri2or  7193
  Copyright terms: Public domain W3C validator