ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ontri2orexmidim GIF version

Theorem ontri2orexmidim 4619
Description: Ordinal trichotomy implies excluded middle. Closed form of ordtri2or2exmid 4618. (Contributed by Jim Kingdon, 26-Aug-2024.)
Assertion
Ref Expression
ontri2orexmidim (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥) → DECID 𝜑)
Distinct variable group:   𝜑,𝑥,𝑦

Proof of Theorem ontri2orexmidim
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ordtri2or2exmidlem 4573 . . . . 5 {𝑧 ∈ {∅, {∅}} ∣ 𝜑} ∈ On
2 suc0 4457 . . . . . 6 suc ∅ = {∅}
3 0elon 4438 . . . . . . 7 ∅ ∈ On
43onsuci 4563 . . . . . 6 suc ∅ ∈ On
52, 4eqeltrri 2278 . . . . 5 {∅} ∈ On
6 sseq1 3215 . . . . . . 7 (𝑥 = {𝑧 ∈ {∅, {∅}} ∣ 𝜑} → (𝑥𝑦 ↔ {𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ 𝑦))
7 sseq2 3216 . . . . . . 7 (𝑥 = {𝑧 ∈ {∅, {∅}} ∣ 𝜑} → (𝑦𝑥𝑦 ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑}))
86, 7orbi12d 794 . . . . . 6 (𝑥 = {𝑧 ∈ {∅, {∅}} ∣ 𝜑} → ((𝑥𝑦𝑦𝑥) ↔ ({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ 𝑦𝑦 ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑})))
9 sseq2 3216 . . . . . . 7 (𝑦 = {∅} → ({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ 𝑦 ↔ {𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅}))
10 sseq1 3215 . . . . . . 7 (𝑦 = {∅} → (𝑦 ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑} ↔ {∅} ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑}))
119, 10orbi12d 794 . . . . . 6 (𝑦 = {∅} → (({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ 𝑦𝑦 ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑}) ↔ ({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅} ∨ {∅} ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑})))
128, 11rspc2va 2890 . . . . 5 ((({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ∈ On ∧ {∅} ∈ On) ∧ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥)) → ({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅} ∨ {∅} ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑}))
131, 5, 12mpanl12 436 . . . 4 (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥) → ({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅} ∨ {∅} ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑}))
145onirri 4590 . . . . . 6 ¬ {∅} ∈ {∅}
15 simpl 109 . . . . . . . 8 (({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅} ∧ 𝜑) → {𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅})
16 simpr 110 . . . . . . . . 9 (({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅} ∧ 𝜑) → 𝜑)
17 p0ex 4231 . . . . . . . . . . 11 {∅} ∈ V
1817prid2 3739 . . . . . . . . . 10 {∅} ∈ {∅, {∅}}
19 biidd 172 . . . . . . . . . . 11 (𝑧 = {∅} → (𝜑𝜑))
2019elrab3 2929 . . . . . . . . . 10 ({∅} ∈ {∅, {∅}} → ({∅} ∈ {𝑧 ∈ {∅, {∅}} ∣ 𝜑} ↔ 𝜑))
2118, 20ax-mp 5 . . . . . . . . 9 ({∅} ∈ {𝑧 ∈ {∅, {∅}} ∣ 𝜑} ↔ 𝜑)
2216, 21sylibr 134 . . . . . . . 8 (({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅} ∧ 𝜑) → {∅} ∈ {𝑧 ∈ {∅, {∅}} ∣ 𝜑})
2315, 22sseldd 3193 . . . . . . 7 (({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅} ∧ 𝜑) → {∅} ∈ {∅})
2423ex 115 . . . . . 6 ({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅} → (𝜑 → {∅} ∈ {∅}))
2514, 24mtoi 665 . . . . 5 ({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅} → ¬ 𝜑)
26 snssg 3766 . . . . . . 7 (∅ ∈ On → (∅ ∈ {𝑧 ∈ {∅, {∅}} ∣ 𝜑} ↔ {∅} ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑}))
273, 26ax-mp 5 . . . . . 6 (∅ ∈ {𝑧 ∈ {∅, {∅}} ∣ 𝜑} ↔ {∅} ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑})
28 0ex 4170 . . . . . . . 8 ∅ ∈ V
2928prid1 3738 . . . . . . 7 ∅ ∈ {∅, {∅}}
30 biidd 172 . . . . . . . 8 (𝑧 = ∅ → (𝜑𝜑))
3130elrab3 2929 . . . . . . 7 (∅ ∈ {∅, {∅}} → (∅ ∈ {𝑧 ∈ {∅, {∅}} ∣ 𝜑} ↔ 𝜑))
3229, 31ax-mp 5 . . . . . 6 (∅ ∈ {𝑧 ∈ {∅, {∅}} ∣ 𝜑} ↔ 𝜑)
3327, 32sylbb1 137 . . . . 5 ({∅} ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑} → 𝜑)
3425, 33orim12i 760 . . . 4 (({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅} ∨ {∅} ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑}) → (¬ 𝜑𝜑))
3513, 34syl 14 . . 3 (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥) → (¬ 𝜑𝜑))
3635orcomd 730 . 2 (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥) → (𝜑 ∨ ¬ 𝜑))
37 df-dc 836 . 2 (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑))
3836, 37sylibr 134 1 (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥) → DECID 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835   = wceq 1372  wcel 2175  wral 2483  {crab 2487  wss 3165  c0 3459  {csn 3632  {cpr 3633  Oncon0 4409  suc csuc 4411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-uni 3850  df-tr 4142  df-iord 4412  df-on 4414  df-suc 4417
This theorem is referenced by:  exmidontri2or  7354
  Copyright terms: Public domain W3C validator