ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syldbl2 GIF version

Theorem syldbl2 1304
Description: Stacked hypotheseis implies goal. (Contributed by Stanislas Polu, 9-Mar-2020.)
Hypothesis
Ref Expression
syldbl2.1 ((𝜑𝜓) → (𝜓𝜃))
Assertion
Ref Expression
syldbl2 ((𝜑𝜓) → 𝜃)

Proof of Theorem syldbl2
StepHypRef Expression
1 syldbl2.1 . . 3 ((𝜑𝜓) → (𝜓𝜃))
21com12 30 . 2 (𝜓 → ((𝜑𝜓) → 𝜃))
32anabsi7 581 1 ((𝜑𝜓) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  elfzoextl  10301
  Copyright terms: Public domain W3C validator