ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldmm GIF version

Theorem reldmm 4941
Description: A relation is inhabited iff its domain is inhabited. (Contributed by Jim Kingdon, 30-Jan-2026.)
Assertion
Ref Expression
reldmm (Rel 𝐴 → (∃𝑥 𝑥𝐴 ↔ ∃𝑦 𝑦 ∈ dom 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴

Proof of Theorem reldmm
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1w 2290 . . 3 (𝑤 = 𝑥 → (𝑤𝐴𝑥𝐴))
21cbvexv 1965 . 2 (∃𝑤 𝑤𝐴 ↔ ∃𝑥 𝑥𝐴)
3 elrel 4820 . . . . . . . 8 ((Rel 𝐴𝑤𝐴) → ∃𝑦𝑧 𝑤 = ⟨𝑦, 𝑧⟩)
4 eleq1 2292 . . . . . . . . . . . 12 (𝑤 = ⟨𝑦, 𝑧⟩ → (𝑤𝐴 ↔ ⟨𝑦, 𝑧⟩ ∈ 𝐴))
54biimpd 144 . . . . . . . . . . 11 (𝑤 = ⟨𝑦, 𝑧⟩ → (𝑤𝐴 → ⟨𝑦, 𝑧⟩ ∈ 𝐴))
65eximi 1646 . . . . . . . . . 10 (∃𝑧 𝑤 = ⟨𝑦, 𝑧⟩ → ∃𝑧(𝑤𝐴 → ⟨𝑦, 𝑧⟩ ∈ 𝐴))
7 nfv 1574 . . . . . . . . . . 11 𝑧 𝑤𝐴
8719.37-1 1720 . . . . . . . . . 10 (∃𝑧(𝑤𝐴 → ⟨𝑦, 𝑧⟩ ∈ 𝐴) → (𝑤𝐴 → ∃𝑧𝑦, 𝑧⟩ ∈ 𝐴))
96, 8syl 14 . . . . . . . . 9 (∃𝑧 𝑤 = ⟨𝑦, 𝑧⟩ → (𝑤𝐴 → ∃𝑧𝑦, 𝑧⟩ ∈ 𝐴))
109eximi 1646 . . . . . . . 8 (∃𝑦𝑧 𝑤 = ⟨𝑦, 𝑧⟩ → ∃𝑦(𝑤𝐴 → ∃𝑧𝑦, 𝑧⟩ ∈ 𝐴))
11 nfv 1574 . . . . . . . . 9 𝑦 𝑤𝐴
121119.37-1 1720 . . . . . . . 8 (∃𝑦(𝑤𝐴 → ∃𝑧𝑦, 𝑧⟩ ∈ 𝐴) → (𝑤𝐴 → ∃𝑦𝑧𝑦, 𝑧⟩ ∈ 𝐴))
133, 10, 123syl 17 . . . . . . 7 ((Rel 𝐴𝑤𝐴) → (𝑤𝐴 → ∃𝑦𝑧𝑦, 𝑧⟩ ∈ 𝐴))
1413syldbl2 1326 . . . . . 6 ((Rel 𝐴𝑤𝐴) → ∃𝑦𝑧𝑦, 𝑧⟩ ∈ 𝐴)
15 vex 2802 . . . . . . . 8 𝑦 ∈ V
1615eldm2 4920 . . . . . . 7 (𝑦 ∈ dom 𝐴 ↔ ∃𝑧𝑦, 𝑧⟩ ∈ 𝐴)
1716exbii 1651 . . . . . 6 (∃𝑦 𝑦 ∈ dom 𝐴 ↔ ∃𝑦𝑧𝑦, 𝑧⟩ ∈ 𝐴)
1814, 17sylibr 134 . . . . 5 ((Rel 𝐴𝑤𝐴) → ∃𝑦 𝑦 ∈ dom 𝐴)
1918ex 115 . . . 4 (Rel 𝐴 → (𝑤𝐴 → ∃𝑦 𝑦 ∈ dom 𝐴))
2019exlimdv 1865 . . 3 (Rel 𝐴 → (∃𝑤 𝑤𝐴 → ∃𝑦 𝑦 ∈ dom 𝐴))
21 elex2 2816 . . . . 5 (⟨𝑦, 𝑧⟩ ∈ 𝐴 → ∃𝑤 𝑤𝐴)
2221exlimivv 1943 . . . 4 (∃𝑦𝑧𝑦, 𝑧⟩ ∈ 𝐴 → ∃𝑤 𝑤𝐴)
2317, 22sylbi 121 . . 3 (∃𝑦 𝑦 ∈ dom 𝐴 → ∃𝑤 𝑤𝐴)
2420, 23impbid1 142 . 2 (Rel 𝐴 → (∃𝑤 𝑤𝐴 ↔ ∃𝑦 𝑦 ∈ dom 𝐴))
252, 24bitr3id 194 1 (Rel 𝐴 → (∃𝑥 𝑥𝐴 ↔ ∃𝑦 𝑦 ∈ dom 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wex 1538  wcel 2200  cop 3669  dom cdm 4718  Rel wrel 4723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-xp 4724  df-rel 4725  df-dm 4728
This theorem is referenced by:  wlkm  16038
  Copyright terms: Public domain W3C validator