| Step | Hyp | Ref
| Expression |
| 1 | | eleq1w 2290 |
. . 3
⊢ (𝑤 = 𝑥 → (𝑤 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) |
| 2 | 1 | cbvexv 1965 |
. 2
⊢
(∃𝑤 𝑤 ∈ 𝐴 ↔ ∃𝑥 𝑥 ∈ 𝐴) |
| 3 | | elrel 4820 |
. . . . . . . 8
⊢ ((Rel
𝐴 ∧ 𝑤 ∈ 𝐴) → ∃𝑦∃𝑧 𝑤 = 〈𝑦, 𝑧〉) |
| 4 | | eleq1 2292 |
. . . . . . . . . . . 12
⊢ (𝑤 = 〈𝑦, 𝑧〉 → (𝑤 ∈ 𝐴 ↔ 〈𝑦, 𝑧〉 ∈ 𝐴)) |
| 5 | 4 | biimpd 144 |
. . . . . . . . . . 11
⊢ (𝑤 = 〈𝑦, 𝑧〉 → (𝑤 ∈ 𝐴 → 〈𝑦, 𝑧〉 ∈ 𝐴)) |
| 6 | 5 | eximi 1646 |
. . . . . . . . . 10
⊢
(∃𝑧 𝑤 = 〈𝑦, 𝑧〉 → ∃𝑧(𝑤 ∈ 𝐴 → 〈𝑦, 𝑧〉 ∈ 𝐴)) |
| 7 | | nfv 1574 |
. . . . . . . . . . 11
⊢
Ⅎ𝑧 𝑤 ∈ 𝐴 |
| 8 | 7 | 19.37-1 1720 |
. . . . . . . . . 10
⊢
(∃𝑧(𝑤 ∈ 𝐴 → 〈𝑦, 𝑧〉 ∈ 𝐴) → (𝑤 ∈ 𝐴 → ∃𝑧〈𝑦, 𝑧〉 ∈ 𝐴)) |
| 9 | 6, 8 | syl 14 |
. . . . . . . . 9
⊢
(∃𝑧 𝑤 = 〈𝑦, 𝑧〉 → (𝑤 ∈ 𝐴 → ∃𝑧〈𝑦, 𝑧〉 ∈ 𝐴)) |
| 10 | 9 | eximi 1646 |
. . . . . . . 8
⊢
(∃𝑦∃𝑧 𝑤 = 〈𝑦, 𝑧〉 → ∃𝑦(𝑤 ∈ 𝐴 → ∃𝑧〈𝑦, 𝑧〉 ∈ 𝐴)) |
| 11 | | nfv 1574 |
. . . . . . . . 9
⊢
Ⅎ𝑦 𝑤 ∈ 𝐴 |
| 12 | 11 | 19.37-1 1720 |
. . . . . . . 8
⊢
(∃𝑦(𝑤 ∈ 𝐴 → ∃𝑧〈𝑦, 𝑧〉 ∈ 𝐴) → (𝑤 ∈ 𝐴 → ∃𝑦∃𝑧〈𝑦, 𝑧〉 ∈ 𝐴)) |
| 13 | 3, 10, 12 | 3syl 17 |
. . . . . . 7
⊢ ((Rel
𝐴 ∧ 𝑤 ∈ 𝐴) → (𝑤 ∈ 𝐴 → ∃𝑦∃𝑧〈𝑦, 𝑧〉 ∈ 𝐴)) |
| 14 | 13 | syldbl2 1326 |
. . . . . 6
⊢ ((Rel
𝐴 ∧ 𝑤 ∈ 𝐴) → ∃𝑦∃𝑧〈𝑦, 𝑧〉 ∈ 𝐴) |
| 15 | | vex 2802 |
. . . . . . . 8
⊢ 𝑦 ∈ V |
| 16 | 15 | eldm2 4920 |
. . . . . . 7
⊢ (𝑦 ∈ dom 𝐴 ↔ ∃𝑧〈𝑦, 𝑧〉 ∈ 𝐴) |
| 17 | 16 | exbii 1651 |
. . . . . 6
⊢
(∃𝑦 𝑦 ∈ dom 𝐴 ↔ ∃𝑦∃𝑧〈𝑦, 𝑧〉 ∈ 𝐴) |
| 18 | 14, 17 | sylibr 134 |
. . . . 5
⊢ ((Rel
𝐴 ∧ 𝑤 ∈ 𝐴) → ∃𝑦 𝑦 ∈ dom 𝐴) |
| 19 | 18 | ex 115 |
. . . 4
⊢ (Rel
𝐴 → (𝑤 ∈ 𝐴 → ∃𝑦 𝑦 ∈ dom 𝐴)) |
| 20 | 19 | exlimdv 1865 |
. . 3
⊢ (Rel
𝐴 → (∃𝑤 𝑤 ∈ 𝐴 → ∃𝑦 𝑦 ∈ dom 𝐴)) |
| 21 | | elex2 2816 |
. . . . 5
⊢
(〈𝑦, 𝑧〉 ∈ 𝐴 → ∃𝑤 𝑤 ∈ 𝐴) |
| 22 | 21 | exlimivv 1943 |
. . . 4
⊢
(∃𝑦∃𝑧〈𝑦, 𝑧〉 ∈ 𝐴 → ∃𝑤 𝑤 ∈ 𝐴) |
| 23 | 17, 22 | sylbi 121 |
. . 3
⊢
(∃𝑦 𝑦 ∈ dom 𝐴 → ∃𝑤 𝑤 ∈ 𝐴) |
| 24 | 20, 23 | impbid1 142 |
. 2
⊢ (Rel
𝐴 → (∃𝑤 𝑤 ∈ 𝐴 ↔ ∃𝑦 𝑦 ∈ dom 𝐴)) |
| 25 | 2, 24 | bitr3id 194 |
1
⊢ (Rel
𝐴 → (∃𝑥 𝑥 ∈ 𝐴 ↔ ∃𝑦 𝑦 ∈ dom 𝐴)) |