| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anabsi7 | GIF version | ||
| Description: Absorption of antecedent into conjunction. (Contributed by NM, 20-Jul-1996.) (Proof shortened by Wolf Lammen, 18-Nov-2013.) |
| Ref | Expression |
|---|---|
| anabsi7.1 | ⊢ (𝜓 → ((𝜑 ∧ 𝜓) → 𝜒)) |
| Ref | Expression |
|---|---|
| anabsi7 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anabsi7.1 | . . 3 ⊢ (𝜓 → ((𝜑 ∧ 𝜓) → 𝜒)) | |
| 2 | 1 | anabsi6 580 | . 2 ⊢ ((𝜓 ∧ 𝜑) → 𝜒) |
| 3 | 2 | ancoms 268 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: syldbl2 1305 syl2an23an 1312 nelrdva 2980 elunii 3855 ordelord 4428 onsucuni2 4612 funfveu 5589 fvelrn 5711 phplem3g 6953 prdisj 7605 gcdmultiplez 12342 dvdssq 12352 |
| Copyright terms: Public domain | W3C validator |