| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfzoextl | GIF version | ||
| Description: Membership of an integer in an extended open range of integers, extension added to the left. (Contributed by AV, 31-Aug-2025.) Generalized by replacing the left border of the ranges. (Revised by SN, 18-Sep-2025.) |
| Ref | Expression |
|---|---|
| elfzoextl | ⊢ ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝑍 ∈ (𝑀..^(𝐼 + 𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzoel2 10288 | . . . . . 6 ⊢ (𝑍 ∈ (𝑀..^𝑁) → 𝑁 ∈ ℤ) | |
| 2 | nn0pzuz 9728 | . . . . . 6 ⊢ ((𝐼 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) → (𝐼 + 𝑁) ∈ (ℤ≥‘𝑁)) | |
| 3 | 1, 2 | sylan2 286 | . . . . 5 ⊢ ((𝐼 ∈ ℕ0 ∧ 𝑍 ∈ (𝑀..^𝑁)) → (𝐼 + 𝑁) ∈ (ℤ≥‘𝑁)) |
| 4 | fzoss2 10316 | . . . . 5 ⊢ ((𝐼 + 𝑁) ∈ (ℤ≥‘𝑁) → (𝑀..^𝑁) ⊆ (𝑀..^(𝐼 + 𝑁))) | |
| 5 | 3, 4 | syl 14 | . . . 4 ⊢ ((𝐼 ∈ ℕ0 ∧ 𝑍 ∈ (𝑀..^𝑁)) → (𝑀..^𝑁) ⊆ (𝑀..^(𝐼 + 𝑁))) |
| 6 | 5 | sseld 3196 | . . 3 ⊢ ((𝐼 ∈ ℕ0 ∧ 𝑍 ∈ (𝑀..^𝑁)) → (𝑍 ∈ (𝑀..^𝑁) → 𝑍 ∈ (𝑀..^(𝐼 + 𝑁)))) |
| 7 | 6 | syldbl2 1305 | . 2 ⊢ ((𝐼 ∈ ℕ0 ∧ 𝑍 ∈ (𝑀..^𝑁)) → 𝑍 ∈ (𝑀..^(𝐼 + 𝑁))) |
| 8 | 7 | ancoms 268 | 1 ⊢ ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝑍 ∈ (𝑀..^(𝐼 + 𝑁))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2177 ⊆ wss 3170 ‘cfv 5280 (class class class)co 5957 + caddc 7948 ℕ0cn0 9315 ℤcz 9392 ℤ≥cuz 9668 ..^cfzo 10284 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-addass 8047 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-0id 8053 ax-rnegex 8054 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-ltadd 8061 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-inn 9057 df-n0 9316 df-z 9393 df-uz 9669 df-fz 10151 df-fzo 10285 |
| This theorem is referenced by: elfzoext 10343 |
| Copyright terms: Public domain | W3C validator |