ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tbtru GIF version

Theorem tbtru 1358
Description: A proposition is equivalent to itself being equivalent to . (Contributed by Anthony Hart, 14-Aug-2011.)
Assertion
Ref Expression
tbtru (𝜑 ↔ (𝜑 ↔ ⊤))

Proof of Theorem tbtru
StepHypRef Expression
1 tru 1352 . 2
21tbt 246 1 (𝜑 ↔ (𝜑 ↔ ⊤))
Colors of variables: wff set class
Syntax hints:  wb 104  wtru 1349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-tru 1351
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator