| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mptru | GIF version | ||
| Description: Eliminate ⊤ as an antecedent. A proposition implied by ⊤ is true. (Contributed by Mario Carneiro, 13-Mar-2014.) |
| Ref | Expression |
|---|---|
| mptru.1 | ⊢ (⊤ → 𝜑) |
| Ref | Expression |
|---|---|
| mptru | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1368 | . 2 ⊢ ⊤ | |
| 2 | mptru.1 | . 2 ⊢ (⊤ → 𝜑) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ⊤wtru 1365 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 |
| This theorem is referenced by: xorbi12i 1394 dcfromcon 1459 nfbi 1603 spime 1755 eubii 2054 nfmo 2065 mobii 2082 dvelimc 2361 ralbii 2503 rexbii 2504 nfralw 2534 nfralxy 2535 nfrexw 2536 nfralya 2537 nfrexya 2538 nfreuxy 2672 nfsbc1 3007 nfsbc 3010 sbcbii 3049 csbeq2i 3111 nfcsb1 3116 nfsbcw 3119 nfcsbw 3121 nfcsb 3122 nfif 3590 ssbri 4078 nfbr 4080 mpteq12i 4122 ralxfr 4502 rexxfr 4504 nfiotaw 5224 nfriota 5890 nfov 5955 mpoeq123i 5989 mpoeq3ia 5991 disjsnxp 6304 tfri1 6432 eqer 6633 0er 6635 ecopover 6701 ecopoverg 6704 nfixpxy 6785 en2i 6838 en3i 6839 ener 6847 ensymb 6848 entr 6852 djuf1olem 7128 omp1eomlem 7169 infnninf 7199 ltsopi 7406 ltsonq 7484 enq0er 7521 ltpopr 7681 ltposr 7849 axcnex 7945 axaddf 7954 axmulf 7955 ltso 8123 nfneg 8242 negiso 9001 sup3exmid 9003 xrltso 9890 frecfzennn 10537 frechashgf1o 10539 0tonninf 10551 1tonninf 10552 nninfinf 10554 facnn 10838 fac0 10839 fac1 10840 cnrecnv 11094 cau3 11299 xrnegiso 11446 sum0 11572 trireciplem 11684 trirecip 11685 ege2le3 11855 oddpwdc 12369 modxai 12612 modsubi 12615 ennnfonelem1 12651 ennnfonelemhf1o 12657 strnfvn 12726 strslss 12753 prdsvallem 12976 prdsval 12977 mndprop 13145 grpprop 13222 isgrpi 13228 ablprop 13505 ringprop 13674 rlmfn 14087 cnfldstr 14192 cncrng 14203 cnfldui 14223 zringbas 14230 zringplusg 14231 dvdsrzring 14237 expghmap 14241 fnpsr 14301 txswaphmeolem 14664 divcnap 14909 expcn 14913 elcncf1ii 14924 cnrehmeocntop 14954 hovercncf 14990 dvid 15039 dvidre 15041 dveflem 15070 dvef 15071 sincn 15113 coscn 15114 cosz12 15124 sincos6thpi 15186 lgsdir2lem5 15381 bj-sttru 15494 bj-dctru 15507 bj-sbimeh 15526 bdnthALT 15589 012of 15748 2o01f 15749 isomninnlem 15787 iooref1o 15791 iswomninnlem 15806 ismkvnnlem 15809 dceqnconst 15817 dcapnconst 15818 taupi 15830 |
| Copyright terms: Public domain | W3C validator |