| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mptru | GIF version | ||
| Description: Eliminate ⊤ as an antecedent. A proposition implied by ⊤ is true. (Contributed by Mario Carneiro, 13-Mar-2014.) |
| Ref | Expression |
|---|---|
| mptru.1 | ⊢ (⊤ → 𝜑) |
| Ref | Expression |
|---|---|
| mptru | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1368 | . 2 ⊢ ⊤ | |
| 2 | mptru.1 | . 2 ⊢ (⊤ → 𝜑) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ⊤wtru 1365 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 |
| This theorem is referenced by: xorbi12i 1394 dcfromcon 1459 nfbi 1603 spime 1755 eubii 2054 nfmo 2065 mobii 2082 dvelimc 2361 ralbii 2503 rexbii 2504 nfralw 2534 nfralxy 2535 nfrexw 2536 nfralya 2537 nfrexya 2538 nfreuxy 2672 nfsbc1 3007 nfsbc 3010 sbcbii 3049 csbeq2i 3111 nfcsb1 3116 nfsbcw 3119 nfcsbw 3121 nfcsb 3122 nfif 3590 ssbri 4078 nfbr 4080 mpteq12i 4122 ralxfr 4502 rexxfr 4504 nfiotaw 5224 nfriota 5890 nfov 5955 mpoeq123i 5989 mpoeq3ia 5991 disjsnxp 6304 tfri1 6432 eqer 6633 0er 6635 ecopover 6701 ecopoverg 6704 nfixpxy 6785 en2i 6838 en3i 6839 ener 6847 ensymb 6848 entr 6852 djuf1olem 7128 omp1eomlem 7169 infnninf 7199 ltsopi 7404 ltsonq 7482 enq0er 7519 ltpopr 7679 ltposr 7847 axcnex 7943 axaddf 7952 axmulf 7953 ltso 8121 nfneg 8240 negiso 8999 sup3exmid 9001 xrltso 9888 frecfzennn 10535 frechashgf1o 10537 0tonninf 10549 1tonninf 10550 nninfinf 10552 facnn 10836 fac0 10837 fac1 10838 cnrecnv 11092 cau3 11297 xrnegiso 11444 sum0 11570 trireciplem 11682 trirecip 11683 ege2le3 11853 oddpwdc 12367 modxai 12610 modsubi 12613 ennnfonelem1 12649 ennnfonelemhf1o 12655 strnfvn 12724 strslss 12751 prdsvallem 12974 prdsval 12975 mndprop 13143 grpprop 13220 isgrpi 13226 ablprop 13503 ringprop 13672 rlmfn 14085 cnfldstr 14190 cncrng 14201 cnfldui 14221 zringbas 14228 zringplusg 14229 dvdsrzring 14235 expghmap 14239 fnpsr 14297 txswaphmeolem 14640 divcnap 14885 expcn 14889 elcncf1ii 14900 cnrehmeocntop 14930 hovercncf 14966 dvid 15015 dvidre 15017 dveflem 15046 dvef 15047 sincn 15089 coscn 15090 cosz12 15100 sincos6thpi 15162 lgsdir2lem5 15357 bj-sttru 15470 bj-dctru 15483 bj-sbimeh 15502 bdnthALT 15565 012of 15724 2o01f 15725 isomninnlem 15761 iooref1o 15765 iswomninnlem 15780 ismkvnnlem 15783 dceqnconst 15791 dcapnconst 15792 taupi 15804 |
| Copyright terms: Public domain | W3C validator |