![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mptru | GIF version |
Description: Eliminate ⊤ as an antecedent. A proposition implied by ⊤ is true. (Contributed by Mario Carneiro, 13-Mar-2014.) |
Ref | Expression |
---|---|
mptru.1 | ⊢ (⊤ → 𝜑) |
Ref | Expression |
---|---|
mptru | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1293 | . 2 ⊢ ⊤ | |
2 | mptru.1 | . 2 ⊢ (⊤ → 𝜑) | |
3 | 1, 2 | ax-mp 7 | 1 ⊢ 𝜑 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ⊤wtru 1290 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 df-tru 1292 |
This theorem is referenced by: xorbi12i 1319 nfbi 1526 spime 1676 eubii 1957 nfmo 1968 mobii 1985 dvelimc 2249 ralbii 2384 rexbii 2385 nfralxy 2414 nfrexxy 2415 nfralya 2416 nfrexya 2417 nfreuxy 2541 nfsbc1 2857 nfsbc 2860 sbcbii 2898 csbeq2i 2957 nfcsb1 2962 nfcsb 2965 nfif 3419 ssbri 3887 nfbr 3889 mpteq12i 3926 ralxfr 4288 rexxfr 4290 nfiotaxy 4984 nfriota 5617 nfov 5679 mpt2eq123i 5712 mpt2eq3ia 5714 disjsnxp 6002 tfri1 6130 eqer 6322 0er 6324 ecopover 6388 ecopoverg 6391 en2i 6485 en3i 6486 ener 6494 ensymb 6495 entr 6499 djuf1olem 6743 ltsopi 6877 ltsonq 6955 enq0er 6992 ltpopr 7152 ltposr 7307 axcnex 7394 ltso 7561 nfneg 7677 negiso 8414 xrltso 9264 frecfzennn 9829 frechashgf1o 9831 0tonninf 9841 1tonninf 9842 facnn 10131 fac0 10132 fac1 10133 cnrecnv 10340 cau3 10544 sum0 10776 trireciplem 10890 trirecip 10891 ege2le3 10957 oddpwdc 11426 strnfvn 11513 strnss 11536 elcncf1ii 11591 bj-sbimeh 11628 bdnthALT 11681 |
Copyright terms: Public domain | W3C validator |