Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mptru | GIF version |
Description: Eliminate ⊤ as an antecedent. A proposition implied by ⊤ is true. (Contributed by Mario Carneiro, 13-Mar-2014.) |
Ref | Expression |
---|---|
mptru.1 | ⊢ (⊤ → 𝜑) |
Ref | Expression |
---|---|
mptru | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1347 | . 2 ⊢ ⊤ | |
2 | mptru.1 | . 2 ⊢ (⊤ → 𝜑) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜑 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ⊤wtru 1344 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-tru 1346 |
This theorem is referenced by: xorbi12i 1373 nfbi 1577 spime 1729 eubii 2023 nfmo 2034 mobii 2051 dvelimc 2330 ralbii 2472 rexbii 2473 nfralw 2503 nfralxy 2504 nfrexxy 2505 nfralya 2506 nfrexya 2507 nfreuxy 2640 nfsbc1 2968 nfsbc 2971 sbcbii 3010 csbeq2i 3072 nfcsb1 3077 nfcsbw 3081 nfcsb 3082 nfif 3548 ssbri 4026 nfbr 4028 mpteq12i 4070 ralxfr 4444 rexxfr 4446 nfiotaw 5157 nfriota 5807 nfov 5872 mpoeq123i 5905 mpoeq3ia 5907 disjsnxp 6205 tfri1 6333 eqer 6533 0er 6535 ecopover 6599 ecopoverg 6602 nfixpxy 6683 en2i 6736 en3i 6737 ener 6745 ensymb 6746 entr 6750 djuf1olem 7018 omp1eomlem 7059 infnninf 7088 ltsopi 7261 ltsonq 7339 enq0er 7376 ltpopr 7536 ltposr 7704 axcnex 7800 axaddf 7809 axmulf 7810 ltso 7976 nfneg 8095 negiso 8850 sup3exmid 8852 xrltso 9732 frecfzennn 10361 frechashgf1o 10363 0tonninf 10374 1tonninf 10375 facnn 10640 fac0 10641 fac1 10642 cnrecnv 10852 cau3 11057 xrnegiso 11203 sum0 11329 trireciplem 11441 trirecip 11442 ege2le3 11612 oddpwdc 12106 ennnfonelem1 12340 ennnfonelemhf1o 12346 strnfvn 12415 strslss 12441 txswaphmeolem 12960 divcnap 13195 elcncf1ii 13207 cnrehmeocntop 13233 dvid 13302 dveflem 13327 dvef 13328 sincn 13330 coscn 13331 cosz12 13341 sincos6thpi 13403 lgsdir2lem5 13573 bj-sttru 13621 bj-dctru 13634 bj-sbimeh 13653 bdnthALT 13717 012of 13875 2o01f 13876 isomninnlem 13909 iooref1o 13913 iswomninnlem 13928 ismkvnnlem 13931 dceqnconst 13938 dcapnconst 13939 taupi 13949 |
Copyright terms: Public domain | W3C validator |