![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mptru | GIF version |
Description: Eliminate ⊤ as an antecedent. A proposition implied by ⊤ is true. (Contributed by Mario Carneiro, 13-Mar-2014.) |
Ref | Expression |
---|---|
mptru.1 | ⊢ (⊤ → 𝜑) |
Ref | Expression |
---|---|
mptru | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1368 | . 2 ⊢ ⊤ | |
2 | mptru.1 | . 2 ⊢ (⊤ → 𝜑) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜑 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ⊤wtru 1365 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-tru 1367 |
This theorem is referenced by: xorbi12i 1394 nfbi 1600 spime 1752 eubii 2051 nfmo 2062 mobii 2079 dvelimc 2358 ralbii 2500 rexbii 2501 nfralw 2531 nfralxy 2532 nfrexw 2533 nfralya 2534 nfrexya 2535 nfreuxy 2669 nfsbc1 3004 nfsbc 3007 sbcbii 3046 csbeq2i 3108 nfcsb1 3113 nfsbcw 3116 nfcsbw 3118 nfcsb 3119 nfif 3586 ssbri 4074 nfbr 4076 mpteq12i 4118 ralxfr 4498 rexxfr 4500 nfiotaw 5220 nfriota 5884 nfov 5949 mpoeq123i 5982 mpoeq3ia 5984 disjsnxp 6292 tfri1 6420 eqer 6621 0er 6623 ecopover 6689 ecopoverg 6692 nfixpxy 6773 en2i 6826 en3i 6827 ener 6835 ensymb 6836 entr 6840 djuf1olem 7114 omp1eomlem 7155 infnninf 7185 ltsopi 7382 ltsonq 7460 enq0er 7497 ltpopr 7657 ltposr 7825 axcnex 7921 axaddf 7930 axmulf 7931 ltso 8099 nfneg 8218 negiso 8976 sup3exmid 8978 xrltso 9865 frecfzennn 10500 frechashgf1o 10502 0tonninf 10514 1tonninf 10515 nninfinf 10517 facnn 10801 fac0 10802 fac1 10803 cnrecnv 11057 cau3 11262 xrnegiso 11408 sum0 11534 trireciplem 11646 trirecip 11647 ege2le3 11817 oddpwdc 12315 ennnfonelem1 12567 ennnfonelemhf1o 12573 strnfvn 12642 strslss 12669 mndprop 13025 grpprop 13093 isgrpi 13099 ablprop 13370 ringprop 13539 rlmfn 13952 cnfldstr 14057 cncrng 14068 cnfldui 14088 zringbas 14095 zringplusg 14096 dvdsrzring 14102 expghmap 14106 fnpsr 14164 txswaphmeolem 14499 divcnap 14744 expcn 14748 elcncf1ii 14759 cnrehmeocntop 14789 hovercncf 14825 dvid 14874 dvidre 14876 dveflem 14905 dvef 14906 sincn 14945 coscn 14946 cosz12 14956 sincos6thpi 15018 lgsdir2lem5 15189 bj-sttru 15302 bj-dctru 15315 bj-sbimeh 15334 bdnthALT 15397 012of 15556 2o01f 15557 isomninnlem 15590 iooref1o 15594 iswomninnlem 15609 ismkvnnlem 15612 dceqnconst 15620 dcapnconst 15621 taupi 15633 |
Copyright terms: Public domain | W3C validator |