| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mptru | GIF version | ||
| Description: Eliminate ⊤ as an antecedent. A proposition implied by ⊤ is true. (Contributed by Mario Carneiro, 13-Mar-2014.) | 
| Ref | Expression | 
|---|---|
| mptru.1 | ⊢ (⊤ → 𝜑) | 
| Ref | Expression | 
|---|---|
| mptru | ⊢ 𝜑 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | tru 1368 | . 2 ⊢ ⊤ | |
| 2 | mptru.1 | . 2 ⊢ (⊤ → 𝜑) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜑 | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ⊤wtru 1365 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 | 
| This theorem is referenced by: xorbi12i 1394 dcfromcon 1459 nfbi 1603 spime 1755 eubii 2054 nfmo 2065 mobii 2082 dvelimc 2361 ralbii 2503 rexbii 2504 nfralw 2534 nfralxy 2535 nfrexw 2536 nfralya 2537 nfrexya 2538 nfreuxy 2672 nfsbc1 3007 nfsbc 3010 sbcbii 3049 csbeq2i 3111 nfcsb1 3116 nfsbcw 3119 nfcsbw 3121 nfcsb 3122 nfif 3589 ssbri 4077 nfbr 4079 mpteq12i 4121 ralxfr 4501 rexxfr 4503 nfiotaw 5223 nfriota 5887 nfov 5952 mpoeq123i 5985 mpoeq3ia 5987 disjsnxp 6295 tfri1 6423 eqer 6624 0er 6626 ecopover 6692 ecopoverg 6695 nfixpxy 6776 en2i 6829 en3i 6830 ener 6838 ensymb 6839 entr 6843 djuf1olem 7119 omp1eomlem 7160 infnninf 7190 ltsopi 7387 ltsonq 7465 enq0er 7502 ltpopr 7662 ltposr 7830 axcnex 7926 axaddf 7935 axmulf 7936 ltso 8104 nfneg 8223 negiso 8982 sup3exmid 8984 xrltso 9871 frecfzennn 10518 frechashgf1o 10520 0tonninf 10532 1tonninf 10533 nninfinf 10535 facnn 10819 fac0 10820 fac1 10821 cnrecnv 11075 cau3 11280 xrnegiso 11427 sum0 11553 trireciplem 11665 trirecip 11666 ege2le3 11836 oddpwdc 12342 modxai 12585 modsubi 12588 ennnfonelem1 12624 ennnfonelemhf1o 12630 strnfvn 12699 strslss 12726 mndprop 13082 grpprop 13150 isgrpi 13156 ablprop 13427 ringprop 13596 rlmfn 14009 cnfldstr 14114 cncrng 14125 cnfldui 14145 zringbas 14152 zringplusg 14153 dvdsrzring 14159 expghmap 14163 fnpsr 14221 txswaphmeolem 14556 divcnap 14801 expcn 14805 elcncf1ii 14816 cnrehmeocntop 14846 hovercncf 14882 dvid 14931 dvidre 14933 dveflem 14962 dvef 14963 sincn 15005 coscn 15006 cosz12 15016 sincos6thpi 15078 lgsdir2lem5 15273 bj-sttru 15386 bj-dctru 15399 bj-sbimeh 15418 bdnthALT 15481 012of 15640 2o01f 15641 isomninnlem 15674 iooref1o 15678 iswomninnlem 15693 ismkvnnlem 15696 dceqnconst 15704 dcapnconst 15705 taupi 15717 | 
| Copyright terms: Public domain | W3C validator |