| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mptru | GIF version | ||
| Description: Eliminate ⊤ as an antecedent. A proposition implied by ⊤ is true. (Contributed by Mario Carneiro, 13-Mar-2014.) |
| Ref | Expression |
|---|---|
| mptru.1 | ⊢ (⊤ → 𝜑) |
| Ref | Expression |
|---|---|
| mptru | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1376 | . 2 ⊢ ⊤ | |
| 2 | mptru.1 | . 2 ⊢ (⊤ → 𝜑) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ⊤wtru 1373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 |
| This theorem is referenced by: xorbi12i 1402 dcfromcon 1467 nfbi 1611 spime 1763 eubii 2062 nfmo 2073 mobii 2090 dvelimc 2369 ralbii 2511 rexbii 2512 nfralw 2542 nfralxy 2543 nfrexw 2544 nfralya 2545 nfrexya 2546 nfreuxy 2680 nfsbc1 3015 nfsbc 3018 sbcbii 3057 csbeq2i 3119 nfcsb1 3124 nfsbcw 3127 nfcsbw 3129 nfcsb 3130 nfif 3598 ssbri 4087 nfbr 4089 mpteq12i 4131 ralxfr 4512 rexxfr 4514 nfiotaw 5235 nfriota 5908 nfov 5973 mpoeq123i 6007 mpoeq3ia 6009 disjsnxp 6322 tfri1 6450 eqer 6651 0er 6653 ecopover 6719 ecopoverg 6722 nfixpxy 6803 en2i 6860 en3i 6861 ener 6870 ensymb 6871 entr 6875 djuf1olem 7154 omp1eomlem 7195 infnninf 7225 ltsopi 7432 ltsonq 7510 enq0er 7547 ltpopr 7707 ltposr 7875 axcnex 7971 axaddf 7980 axmulf 7981 ltso 8149 nfneg 8268 negiso 9027 sup3exmid 9029 xrltso 9917 frecfzennn 10569 frechashgf1o 10571 0tonninf 10583 1tonninf 10584 nninfinf 10586 facnn 10870 fac0 10871 fac1 10872 cnrecnv 11163 cau3 11368 xrnegiso 11515 sum0 11641 trireciplem 11753 trirecip 11754 ege2le3 11924 oddpwdc 12438 modxai 12681 modsubi 12684 ennnfonelem1 12720 ennnfonelemhf1o 12726 strnfvn 12795 strslss 12822 prdsvallem 13046 prdsval 13047 mndprop 13215 grpprop 13292 isgrpi 13298 ablprop 13575 ringprop 13744 rlmfn 14157 cnfldstr 14262 cncrng 14273 cnfldui 14293 zringbas 14300 zringplusg 14301 dvdsrzring 14307 expghmap 14311 fnpsr 14371 txswaphmeolem 14734 divcnap 14979 expcn 14983 elcncf1ii 14994 cnrehmeocntop 15024 hovercncf 15060 dvid 15109 dvidre 15111 dveflem 15140 dvef 15141 sincn 15183 coscn 15184 cosz12 15194 sincos6thpi 15256 lgsdir2lem5 15451 bj-sttru 15609 bj-dctru 15622 bj-sbimeh 15641 bdnthALT 15704 012of 15863 2o01f 15864 isomninnlem 15902 iooref1o 15906 iswomninnlem 15921 ismkvnnlem 15924 dceqnconst 15932 dcapnconst 15933 taupi 15945 |
| Copyright terms: Public domain | W3C validator |