| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mptru | GIF version | ||
| Description: Eliminate ⊤ as an antecedent. A proposition implied by ⊤ is true. (Contributed by Mario Carneiro, 13-Mar-2014.) |
| Ref | Expression |
|---|---|
| mptru.1 | ⊢ (⊤ → 𝜑) |
| Ref | Expression |
|---|---|
| mptru | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1376 | . 2 ⊢ ⊤ | |
| 2 | mptru.1 | . 2 ⊢ (⊤ → 𝜑) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ⊤wtru 1373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 |
| This theorem is referenced by: xorbi12i 1402 dcfromcon 1467 nfbi 1611 spime 1763 eubii 2062 nfmo 2073 mobii 2090 dvelimc 2369 ralbii 2511 rexbii 2512 nfralw 2542 nfralxy 2543 nfrexw 2544 nfralya 2545 nfrexya 2546 nfreuxy 2680 nfsbc1 3015 nfsbc 3018 sbcbii 3057 csbeq2i 3119 nfcsb1 3124 nfsbcw 3127 nfcsbw 3129 nfcsb 3130 nfif 3598 ssbri 4087 nfbr 4089 mpteq12i 4131 ralxfr 4511 rexxfr 4513 nfiotaw 5233 nfriota 5899 nfov 5964 mpoeq123i 5998 mpoeq3ia 6000 disjsnxp 6313 tfri1 6441 eqer 6642 0er 6644 ecopover 6710 ecopoverg 6713 nfixpxy 6794 en2i 6847 en3i 6848 ener 6856 ensymb 6857 entr 6861 djuf1olem 7137 omp1eomlem 7178 infnninf 7208 ltsopi 7415 ltsonq 7493 enq0er 7530 ltpopr 7690 ltposr 7858 axcnex 7954 axaddf 7963 axmulf 7964 ltso 8132 nfneg 8251 negiso 9010 sup3exmid 9012 xrltso 9900 frecfzennn 10552 frechashgf1o 10554 0tonninf 10566 1tonninf 10567 nninfinf 10569 facnn 10853 fac0 10854 fac1 10855 cnrecnv 11140 cau3 11345 xrnegiso 11492 sum0 11618 trireciplem 11730 trirecip 11731 ege2le3 11901 oddpwdc 12415 modxai 12658 modsubi 12661 ennnfonelem1 12697 ennnfonelemhf1o 12703 strnfvn 12772 strslss 12799 prdsvallem 13022 prdsval 13023 mndprop 13191 grpprop 13268 isgrpi 13274 ablprop 13551 ringprop 13720 rlmfn 14133 cnfldstr 14238 cncrng 14249 cnfldui 14269 zringbas 14276 zringplusg 14277 dvdsrzring 14283 expghmap 14287 fnpsr 14347 txswaphmeolem 14710 divcnap 14955 expcn 14959 elcncf1ii 14970 cnrehmeocntop 15000 hovercncf 15036 dvid 15085 dvidre 15087 dveflem 15116 dvef 15117 sincn 15159 coscn 15160 cosz12 15170 sincos6thpi 15232 lgsdir2lem5 15427 bj-sttru 15540 bj-dctru 15553 bj-sbimeh 15572 bdnthALT 15635 012of 15794 2o01f 15795 isomninnlem 15833 iooref1o 15837 iswomninnlem 15852 ismkvnnlem 15855 dceqnconst 15863 dcapnconst 15864 taupi 15876 |
| Copyright terms: Public domain | W3C validator |