| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mptru | GIF version | ||
| Description: Eliminate ⊤ as an antecedent. A proposition implied by ⊤ is true. (Contributed by Mario Carneiro, 13-Mar-2014.) |
| Ref | Expression |
|---|---|
| mptru.1 | ⊢ (⊤ → 𝜑) |
| Ref | Expression |
|---|---|
| mptru | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1399 | . 2 ⊢ ⊤ | |
| 2 | mptru.1 | . 2 ⊢ (⊤ → 𝜑) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ⊤wtru 1396 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 |
| This theorem is referenced by: xorbi12i 1425 dcfromcon 1491 nfbi 1635 spime 1787 eubii 2086 nfmo 2097 mobii 2114 dvelimc 2394 ralbii 2536 rexbii 2537 nfralw 2567 nfralxy 2568 nfrexw 2569 nfralya 2570 nfrexya 2571 nfreuw 2706 nfsbc1 3046 nfsbc 3049 sbcbii 3088 csbeq2i 3151 nfcsb1 3156 nfsbcw 3159 nfcsbw 3161 nfcsb 3162 nfif 3631 ssbri 4127 nfbr 4129 mpteq12i 4171 ralxfr 4556 rexxfr 4558 nfiotaw 5281 nfriota 5963 nfov 6030 mpoeq123i 6066 mpoeq3ia 6068 disjsnxp 6381 tfri1 6509 eqer 6710 0er 6712 ecopover 6778 ecopoverg 6781 nfixpxy 6862 en2i 6919 en3i 6920 ener 6929 ensymb 6930 entr 6934 djuf1olem 7216 omp1eomlem 7257 infnninf 7287 ltsopi 7503 ltsonq 7581 enq0er 7618 ltpopr 7778 ltposr 7946 axcnex 8042 axaddf 8051 axmulf 8052 ltso 8220 nfneg 8339 negiso 9098 sup3exmid 9100 xrltso 9988 frecfzennn 10643 frechashgf1o 10645 0tonninf 10657 1tonninf 10658 nninfinf 10660 facnn 10944 fac0 10945 fac1 10946 cnrecnv 11416 cau3 11621 xrnegiso 11768 sum0 11894 trireciplem 12006 trirecip 12007 ege2le3 12177 oddpwdc 12691 modxai 12934 modsubi 12937 ennnfonelem1 12973 ennnfonelemhf1o 12979 strnfvn 13048 strslss 13075 prdsvallem 13300 prdsval 13301 mndprop 13469 grpprop 13546 isgrpi 13552 ablprop 13829 ringprop 13998 rlmfn 14411 cnfldstr 14516 cncrng 14527 cnfldui 14547 zringbas 14554 zringplusg 14555 dvdsrzring 14561 expghmap 14565 fnpsr 14625 txswaphmeolem 14988 divcnap 15233 expcn 15237 elcncf1ii 15248 cnrehmeocntop 15278 hovercncf 15314 dvid 15363 dvidre 15365 dveflem 15394 dvef 15395 sincn 15437 coscn 15438 cosz12 15448 sincos6thpi 15510 lgsdir2lem5 15705 bj-sttru 16062 bj-dctru 16075 bj-sbimeh 16094 bdnthALT 16156 012of 16316 2o01f 16317 isomninnlem 16357 iooref1o 16361 iswomninnlem 16376 ismkvnnlem 16379 dceqnconst 16387 dcapnconst 16388 taupi 16400 |
| Copyright terms: Public domain | W3C validator |