| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mptru | GIF version | ||
| Description: Eliminate ⊤ as an antecedent. A proposition implied by ⊤ is true. (Contributed by Mario Carneiro, 13-Mar-2014.) |
| Ref | Expression |
|---|---|
| mptru.1 | ⊢ (⊤ → 𝜑) |
| Ref | Expression |
|---|---|
| mptru | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1377 | . 2 ⊢ ⊤ | |
| 2 | mptru.1 | . 2 ⊢ (⊤ → 𝜑) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ⊤wtru 1374 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 |
| This theorem is referenced by: xorbi12i 1403 dcfromcon 1469 nfbi 1613 spime 1765 eubii 2064 nfmo 2075 mobii 2092 dvelimc 2371 ralbii 2513 rexbii 2514 nfralw 2544 nfralxy 2545 nfrexw 2546 nfralya 2547 nfrexya 2548 nfreuxy 2682 nfsbc1 3020 nfsbc 3023 sbcbii 3062 csbeq2i 3124 nfcsb1 3129 nfsbcw 3132 nfcsbw 3134 nfcsb 3135 nfif 3604 ssbri 4096 nfbr 4098 mpteq12i 4140 ralxfr 4521 rexxfr 4523 nfiotaw 5245 nfriota 5922 nfov 5987 mpoeq123i 6021 mpoeq3ia 6023 disjsnxp 6336 tfri1 6464 eqer 6665 0er 6667 ecopover 6733 ecopoverg 6736 nfixpxy 6817 en2i 6874 en3i 6875 ener 6884 ensymb 6885 entr 6889 djuf1olem 7170 omp1eomlem 7211 infnninf 7241 ltsopi 7453 ltsonq 7531 enq0er 7568 ltpopr 7728 ltposr 7896 axcnex 7992 axaddf 8001 axmulf 8002 ltso 8170 nfneg 8289 negiso 9048 sup3exmid 9050 xrltso 9938 frecfzennn 10593 frechashgf1o 10595 0tonninf 10607 1tonninf 10608 nninfinf 10610 facnn 10894 fac0 10895 fac1 10896 cnrecnv 11296 cau3 11501 xrnegiso 11648 sum0 11774 trireciplem 11886 trirecip 11887 ege2le3 12057 oddpwdc 12571 modxai 12814 modsubi 12817 ennnfonelem1 12853 ennnfonelemhf1o 12859 strnfvn 12928 strslss 12955 prdsvallem 13179 prdsval 13180 mndprop 13348 grpprop 13425 isgrpi 13431 ablprop 13708 ringprop 13877 rlmfn 14290 cnfldstr 14395 cncrng 14406 cnfldui 14426 zringbas 14433 zringplusg 14434 dvdsrzring 14440 expghmap 14444 fnpsr 14504 txswaphmeolem 14867 divcnap 15112 expcn 15116 elcncf1ii 15127 cnrehmeocntop 15157 hovercncf 15193 dvid 15242 dvidre 15244 dveflem 15273 dvef 15274 sincn 15316 coscn 15317 cosz12 15327 sincos6thpi 15389 lgsdir2lem5 15584 bj-sttru 15815 bj-dctru 15828 bj-sbimeh 15847 bdnthALT 15909 012of 16069 2o01f 16070 isomninnlem 16110 iooref1o 16114 iswomninnlem 16129 ismkvnnlem 16132 dceqnconst 16140 dcapnconst 16141 taupi 16153 |
| Copyright terms: Public domain | W3C validator |