Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mptru | GIF version |
Description: Eliminate ⊤ as an antecedent. A proposition implied by ⊤ is true. (Contributed by Mario Carneiro, 13-Mar-2014.) |
Ref | Expression |
---|---|
mptru.1 | ⊢ (⊤ → 𝜑) |
Ref | Expression |
---|---|
mptru | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1339 | . 2 ⊢ ⊤ | |
2 | mptru.1 | . 2 ⊢ (⊤ → 𝜑) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜑 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ⊤wtru 1336 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-tru 1338 |
This theorem is referenced by: xorbi12i 1365 nfbi 1569 spime 1721 eubii 2015 nfmo 2026 mobii 2043 dvelimc 2321 ralbii 2463 rexbii 2464 nfralw 2494 nfralxy 2495 nfrexxy 2496 nfralya 2497 nfrexya 2498 nfreuxy 2631 nfsbc1 2954 nfsbc 2957 sbcbii 2996 csbeq2i 3058 nfcsb1 3063 nfcsbw 3067 nfcsb 3068 nfif 3533 ssbri 4008 nfbr 4010 mpteq12i 4052 ralxfr 4424 rexxfr 4426 nfiotaw 5136 nfriota 5783 nfov 5845 mpoeq123i 5878 mpoeq3ia 5880 disjsnxp 6178 tfri1 6306 eqer 6505 0er 6507 ecopover 6571 ecopoverg 6574 nfixpxy 6655 en2i 6708 en3i 6709 ener 6717 ensymb 6718 entr 6722 djuf1olem 6987 omp1eomlem 7028 infnninf 7056 ltsopi 7223 ltsonq 7301 enq0er 7338 ltpopr 7498 ltposr 7666 axcnex 7762 axaddf 7771 axmulf 7772 ltso 7938 nfneg 8055 negiso 8809 sup3exmid 8811 xrltso 9685 frecfzennn 10307 frechashgf1o 10309 0tonninf 10320 1tonninf 10321 facnn 10583 fac0 10584 fac1 10585 cnrecnv 10792 cau3 10997 xrnegiso 11141 sum0 11267 trireciplem 11379 trirecip 11380 ege2le3 11550 oddpwdc 12028 ennnfonelem1 12108 ennnfonelemhf1o 12114 strnfvn 12171 strslss 12197 txswaphmeolem 12680 divcnap 12915 elcncf1ii 12927 cnrehmeocntop 12953 dvid 13022 dveflem 13047 dvef 13048 sincn 13050 coscn 13051 cosz12 13061 sincos6thpi 13123 bj-sttru 13274 bj-dctru 13284 bj-sbimeh 13305 bdnthALT 13369 012of 13527 2o01f 13528 isomninnlem 13563 iooref1o 13567 iswomninnlem 13582 ismkvnnlem 13585 dceqnconst 13592 dcapnconst 13593 taupi 13603 |
Copyright terms: Public domain | W3C validator |