![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mptru | GIF version |
Description: Eliminate ⊤ as an antecedent. A proposition implied by ⊤ is true. (Contributed by Mario Carneiro, 13-Mar-2014.) |
Ref | Expression |
---|---|
mptru.1 | ⊢ (⊤ → 𝜑) |
Ref | Expression |
---|---|
mptru | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1357 | . 2 ⊢ ⊤ | |
2 | mptru.1 | . 2 ⊢ (⊤ → 𝜑) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜑 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ⊤wtru 1354 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-tru 1356 |
This theorem is referenced by: xorbi12i 1383 nfbi 1589 spime 1741 eubii 2035 nfmo 2046 mobii 2063 dvelimc 2341 ralbii 2483 rexbii 2484 nfralw 2514 nfralxy 2515 nfrexxy 2516 nfralya 2517 nfrexya 2518 nfreuxy 2652 nfsbc1 2982 nfsbc 2985 sbcbii 3024 csbeq2i 3086 nfcsb1 3091 nfcsbw 3095 nfcsb 3096 nfif 3564 ssbri 4049 nfbr 4051 mpteq12i 4093 ralxfr 4468 rexxfr 4470 nfiotaw 5184 nfriota 5842 nfov 5907 mpoeq123i 5940 mpoeq3ia 5942 disjsnxp 6240 tfri1 6368 eqer 6569 0er 6571 ecopover 6635 ecopoverg 6638 nfixpxy 6719 en2i 6772 en3i 6773 ener 6781 ensymb 6782 entr 6786 djuf1olem 7054 omp1eomlem 7095 infnninf 7124 ltsopi 7321 ltsonq 7399 enq0er 7436 ltpopr 7596 ltposr 7764 axcnex 7860 axaddf 7869 axmulf 7870 ltso 8037 nfneg 8156 negiso 8914 sup3exmid 8916 xrltso 9798 frecfzennn 10428 frechashgf1o 10430 0tonninf 10441 1tonninf 10442 facnn 10709 fac0 10710 fac1 10711 cnrecnv 10921 cau3 11126 xrnegiso 11272 sum0 11398 trireciplem 11510 trirecip 11511 ege2le3 11681 oddpwdc 12176 ennnfonelem1 12410 ennnfonelemhf1o 12416 strnfvn 12485 strslss 12512 mndprop 12847 grpprop 12899 isgrpi 12905 ablprop 13105 ringprop 13224 cnfldstr 13542 cncrng 13548 zringbas 13571 zringplusg 13572 dvdsrzring 13578 txswaphmeolem 13905 divcnap 14140 elcncf1ii 14152 cnrehmeocntop 14178 dvid 14247 dveflem 14272 dvef 14273 sincn 14275 coscn 14276 cosz12 14286 sincos6thpi 14348 lgsdir2lem5 14518 bj-sttru 14577 bj-dctru 14590 bj-sbimeh 14609 bdnthALT 14672 012of 14830 2o01f 14831 isomninnlem 14863 iooref1o 14867 iswomninnlem 14882 ismkvnnlem 14885 dceqnconst 14893 dcapnconst 14894 taupi 14906 |
Copyright terms: Public domain | W3C validator |