| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tru | GIF version | ||
| Description: The truth value ⊤ is provable. (Contributed by Anthony Hart, 13-Oct-2010.) |
| Ref | Expression |
|---|---|
| tru | ⊢ ⊤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (∀𝑥 𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥) | |
| 2 | df-tru 1375 | . 2 ⊢ (⊤ ↔ (∀𝑥 𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥)) | |
| 3 | 1, 2 | mpbir 146 | 1 ⊢ ⊤ |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1370 = wceq 1372 ⊤wtru 1373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 |
| This theorem is referenced by: fal 1379 dftru2 1380 mptru 1381 tbtru 1382 bitru 1384 trud 1388 truan 1389 truorfal 1425 falortru 1426 truimfal 1429 nftru 1488 euotd 4298 rabxfr 4516 reuhyp 4518 elabrex 5825 elabrexg 5826 caovcl 6100 caovass 6106 caovdi 6125 ectocl 6688 reef11 11981 mpomulcn 15009 bj-sbimeh 15670 bdtru 15730 bj-nn0suc0 15848 |
| Copyright terms: Public domain | W3C validator |