| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tru | GIF version | ||
| Description: The truth value ⊤ is provable. (Contributed by Anthony Hart, 13-Oct-2010.) |
| Ref | Expression |
|---|---|
| tru | ⊢ ⊤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (∀𝑥 𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥) | |
| 2 | df-tru 1367 | . 2 ⊢ (⊤ ↔ (∀𝑥 𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥)) | |
| 3 | 1, 2 | mpbir 146 | 1 ⊢ ⊤ |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1362 = wceq 1364 ⊤wtru 1365 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 |
| This theorem is referenced by: fal 1371 dftru2 1372 mptru 1373 tbtru 1374 bitru 1376 trud 1380 truan 1381 truorfal 1417 falortru 1418 truimfal 1421 nftru 1480 euotd 4287 rabxfr 4505 reuhyp 4507 elabrex 5804 elabrexg 5805 caovcl 6078 caovass 6084 caovdi 6103 ectocl 6661 reef11 11864 mpomulcn 14802 bj-sbimeh 15418 bdtru 15478 bj-nn0suc0 15596 |
| Copyright terms: Public domain | W3C validator |