| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tru | GIF version | ||
| Description: The truth value ⊤ is provable. (Contributed by Anthony Hart, 13-Oct-2010.) |
| Ref | Expression |
|---|---|
| tru | ⊢ ⊤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (∀𝑥 𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥) | |
| 2 | df-tru 1376 | . 2 ⊢ (⊤ ↔ (∀𝑥 𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥)) | |
| 3 | 1, 2 | mpbir 146 | 1 ⊢ ⊤ |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1371 = wceq 1373 ⊤wtru 1374 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 |
| This theorem is referenced by: fal 1380 dftru2 1381 mptru 1382 tbtru 1383 bitru 1385 trud 1389 truan 1390 truorfal 1426 falortru 1427 truimfal 1430 nftru 1490 euotd 4317 rabxfr 4535 reuhyp 4537 elabrex 5849 elabrexg 5850 caovcl 6124 caovass 6130 caovdi 6149 ectocl 6712 reef11 12125 mpomulcn 15153 bj-sbimeh 15908 bdtru 15967 bj-nn0suc0 16085 |
| Copyright terms: Public domain | W3C validator |