| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tru | GIF version | ||
| Description: The truth value ⊤ is provable. (Contributed by Anthony Hart, 13-Oct-2010.) |
| Ref | Expression |
|---|---|
| tru | ⊢ ⊤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (∀𝑥 𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥) | |
| 2 | df-tru 1367 | . 2 ⊢ (⊤ ↔ (∀𝑥 𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥)) | |
| 3 | 1, 2 | mpbir 146 | 1 ⊢ ⊤ |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1362 = wceq 1364 ⊤wtru 1365 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 |
| This theorem is referenced by: fal 1371 dftru2 1372 mptru 1373 tbtru 1374 bitru 1376 trud 1380 truan 1381 truorfal 1417 falortru 1418 truimfal 1421 nftru 1480 euotd 4288 rabxfr 4506 reuhyp 4508 elabrex 5807 elabrexg 5808 caovcl 6082 caovass 6088 caovdi 6107 ectocl 6670 reef11 11881 mpomulcn 14886 bj-sbimeh 15502 bdtru 15562 bj-nn0suc0 15680 |
| Copyright terms: Public domain | W3C validator |