ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tru GIF version

Theorem tru 1347
Description: The truth value is provable. (Contributed by Anthony Hart, 13-Oct-2010.)
Assertion
Ref Expression
tru

Proof of Theorem tru
StepHypRef Expression
1 id 19 . 2 (∀𝑥 𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥)
2 df-tru 1346 . 2 (⊤ ↔ (∀𝑥 𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥))
31, 2mpbir 145 1
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1341   = wceq 1343  wtru 1344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-tru 1346
This theorem is referenced by:  fal  1350  dftru2  1351  mptru  1352  tbtru  1353  bitru  1355  a1tru  1359  truan  1360  truorfal  1396  falortru  1397  truimfal  1400  nftru  1454  euotd  4232  rabxfr  4448  reuhyp  4450  elabrex  5726  caovcl  5996  caovass  6002  caovdi  6021  ectocl  6568  reef11  11640  bj-sbimeh  13653  bdtru  13714  bj-nn0suc0  13832
  Copyright terms: Public domain W3C validator