ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tru GIF version

Theorem tru 1352
Description: The truth value is provable. (Contributed by Anthony Hart, 13-Oct-2010.)
Assertion
Ref Expression
tru

Proof of Theorem tru
StepHypRef Expression
1 id 19 . 2 (∀𝑥 𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥)
2 df-tru 1351 . 2 (⊤ ↔ (∀𝑥 𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥))
31, 2mpbir 145 1
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1346   = wceq 1348  wtru 1349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-tru 1351
This theorem is referenced by:  fal  1355  dftru2  1356  mptru  1357  tbtru  1358  bitru  1360  a1tru  1364  truan  1365  truorfal  1401  falortru  1402  truimfal  1405  nftru  1459  euotd  4239  rabxfr  4455  reuhyp  4457  elabrex  5737  caovcl  6007  caovass  6013  caovdi  6032  ectocl  6580  reef11  11662  bj-sbimeh  13807  bdtru  13867  bj-nn0suc0  13985
  Copyright terms: Public domain W3C validator