| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tru | GIF version | ||
| Description: The truth value ⊤ is provable. (Contributed by Anthony Hart, 13-Oct-2010.) |
| Ref | Expression |
|---|---|
| tru | ⊢ ⊤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (∀𝑥 𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥) | |
| 2 | df-tru 1376 | . 2 ⊢ (⊤ ↔ (∀𝑥 𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥)) | |
| 3 | 1, 2 | mpbir 146 | 1 ⊢ ⊤ |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1371 = wceq 1373 ⊤wtru 1374 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 |
| This theorem is referenced by: fal 1380 dftru2 1381 mptru 1382 tbtru 1383 bitru 1385 trud 1389 truan 1390 truorfal 1426 falortru 1427 truimfal 1430 nftru 1489 euotd 4299 rabxfr 4517 reuhyp 4519 elabrex 5826 elabrexg 5827 caovcl 6101 caovass 6107 caovdi 6126 ectocl 6689 reef11 12010 mpomulcn 15038 bj-sbimeh 15708 bdtru 15768 bj-nn0suc0 15886 |
| Copyright terms: Public domain | W3C validator |