| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tru | GIF version | ||
| Description: The truth value ⊤ is provable. (Contributed by Anthony Hart, 13-Oct-2010.) |
| Ref | Expression |
|---|---|
| tru | ⊢ ⊤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (∀𝑥 𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥) | |
| 2 | df-tru 1398 | . 2 ⊢ (⊤ ↔ (∀𝑥 𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥)) | |
| 3 | 1, 2 | mpbir 146 | 1 ⊢ ⊤ |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1393 = wceq 1395 ⊤wtru 1396 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 |
| This theorem is referenced by: fal 1402 dftru2 1403 mptru 1404 tbtru 1405 bitru 1407 trud 1411 truan 1412 truorfal 1448 falortru 1449 truimfal 1452 nftru 1512 euotd 4340 rabxfr 4560 reuhyp 4562 elabrex 5880 elabrexg 5881 caovcl 6159 caovass 6165 caovdi 6184 ectocl 6747 reef11 12205 mpomulcn 15234 bj-sbimeh 16094 bdtru 16153 bj-nn0suc0 16271 |
| Copyright terms: Public domain | W3C validator |