ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nbfal GIF version

Theorem nbfal 1364
Description: The negation of a proposition is equivalent to itself being equivalent to . (Contributed by Anthony Hart, 14-Aug-2011.)
Assertion
Ref Expression
nbfal 𝜑 ↔ (𝜑 ↔ ⊥))

Proof of Theorem nbfal
StepHypRef Expression
1 fal 1360 . 2 ¬ ⊥
21nbn 699 1 𝜑 ↔ (𝜑 ↔ ⊥))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 105  wfal 1358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-fal 1359
This theorem is referenced by:  zfnuleu  4128
  Copyright terms: Public domain W3C validator