Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > truan | GIF version |
Description: True can be removed from a conjunction. (Contributed by FL, 20-Mar-2011.) (Proof shortened by Wolf Lammen, 21-Jul-2019.) |
Ref | Expression |
---|---|
truan | ⊢ ((⊤ ∧ 𝜑) ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1357 | . . 3 ⊢ ⊤ | |
2 | 1 | biantrur 303 | . 2 ⊢ (𝜑 ↔ (⊤ ∧ 𝜑)) |
3 | 2 | bicomi 132 | 1 ⊢ ((⊤ ∧ 𝜑) ↔ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 ⊤wtru 1354 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-tru 1356 |
This theorem is referenced by: truanfal 1402 truxortru 1419 truxorfal 1420 |
Copyright terms: Public domain | W3C validator |