ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  falantru GIF version

Theorem falantru 1349
Description: A identity. (Contributed by David A. Wheeler, 23-Feb-2018.)
Assertion
Ref Expression
falantru ((⊥ ∧ ⊤) ↔ ⊥)

Proof of Theorem falantru
StepHypRef Expression
1 simpl 108 . 2 ((⊥ ∧ ⊤) → ⊥)
2 falim 1313 . 2 (⊥ → (⊥ ∧ ⊤))
31, 2impbii 125 1 ((⊥ ∧ ⊤) ↔ ⊥)
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  wtru 1300  wfal 1304
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585
This theorem depends on definitions:  df-bi 116  df-tru 1302  df-fal 1305
This theorem is referenced by:  trubifal  1362  falxortru  1367  falxorfal  1368
  Copyright terms: Public domain W3C validator