Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > falantru | GIF version |
Description: A ∧ identity. (Contributed by David A. Wheeler, 23-Feb-2018.) |
Ref | Expression |
---|---|
falantru | ⊢ ((⊥ ∧ ⊤) ↔ ⊥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . 2 ⊢ ((⊥ ∧ ⊤) → ⊥) | |
2 | falim 1357 | . 2 ⊢ (⊥ → (⊥ ∧ ⊤)) | |
3 | 1, 2 | impbii 125 | 1 ⊢ ((⊥ ∧ ⊤) ↔ ⊥) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ⊤wtru 1344 ⊥wfal 1348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-fal 1349 |
This theorem is referenced by: trubifal 1406 falxortru 1411 falxorfal 1412 |
Copyright terms: Public domain | W3C validator |