ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  falantru GIF version

Theorem falantru 1445
Description: A identity. (Contributed by David A. Wheeler, 23-Feb-2018.)
Assertion
Ref Expression
falantru ((⊥ ∧ ⊤) ↔ ⊥)

Proof of Theorem falantru
StepHypRef Expression
1 simpl 109 . 2 ((⊥ ∧ ⊤) → ⊥)
2 falim 1409 . 2 (⊥ → (⊥ ∧ ⊤))
31, 2impbii 126 1 ((⊥ ∧ ⊤) ↔ ⊥)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wtru 1396  wfal 1400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401
This theorem is referenced by:  trubifal  1458  falxortru  1463  falxorfal  1464
  Copyright terms: Public domain W3C validator