ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  truortru GIF version

Theorem truortru 1405
Description: A identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Assertion
Ref Expression
truortru ((⊤ ∨ ⊤) ↔ ⊤)

Proof of Theorem truortru
StepHypRef Expression
1 oridm 757 1 ((⊤ ∨ ⊤) ↔ ⊤)
Colors of variables: wff set class
Syntax hints:  wb 105  wo 708  wtru 1354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709
This theorem depends on definitions:  df-bi 117
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator