| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oridm | GIF version | ||
| Description: Idempotent law for disjunction. Theorem *4.25 of [WhiteheadRussell] p. 117. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 16-Apr-2011.) (Proof shortened by Wolf Lammen, 10-Mar-2013.) |
| Ref | Expression |
|---|---|
| oridm | ⊢ ((𝜑 ∨ 𝜑) ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm1.2 758 | . 2 ⊢ ((𝜑 ∨ 𝜑) → 𝜑) | |
| 2 | pm2.07 739 | . 2 ⊢ (𝜑 → (𝜑 ∨ 𝜑)) | |
| 3 | 1, 2 | impbii 126 | 1 ⊢ ((𝜑 ∨ 𝜑) ↔ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∨ wo 710 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm4.25 760 orordi 775 orordir 776 truortru 1425 falorfal 1428 truxortru 1439 falxorfal 1442 unidm 3320 preqsn 3822 funopsn 5775 reapirr 8670 reapti 8672 lt2msq 8979 nn0ge2m1nn 9375 absext 11449 prmdvdsexp 12545 sqpweven 12572 2sqpwodd 12573 |
| Copyright terms: Public domain | W3C validator |