| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oridm | GIF version | ||
| Description: Idempotent law for disjunction. Theorem *4.25 of [WhiteheadRussell] p. 117. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 16-Apr-2011.) (Proof shortened by Wolf Lammen, 10-Mar-2013.) |
| Ref | Expression |
|---|---|
| oridm | ⊢ ((𝜑 ∨ 𝜑) ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm1.2 761 | . 2 ⊢ ((𝜑 ∨ 𝜑) → 𝜑) | |
| 2 | pm2.07 742 | . 2 ⊢ (𝜑 → (𝜑 ∨ 𝜑)) | |
| 3 | 1, 2 | impbii 126 | 1 ⊢ ((𝜑 ∨ 𝜑) ↔ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∨ wo 713 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm4.25 763 orordi 778 orordir 779 truortru 1447 falorfal 1450 truxortru 1461 falxorfal 1464 unidm 3347 preqsn 3852 funopsn 5816 reapirr 8720 reapti 8722 lt2msq 9029 nn0ge2m1nn 9425 absext 11569 prmdvdsexp 12665 sqpweven 12692 2sqpwodd 12693 |
| Copyright terms: Public domain | W3C validator |