ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oridm GIF version

Theorem oridm 758
Description: Idempotent law for disjunction. Theorem *4.25 of [WhiteheadRussell] p. 117. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 16-Apr-2011.) (Proof shortened by Wolf Lammen, 10-Mar-2013.)
Assertion
Ref Expression
oridm ((𝜑𝜑) ↔ 𝜑)

Proof of Theorem oridm
StepHypRef Expression
1 pm1.2 757 . 2 ((𝜑𝜑) → 𝜑)
2 pm2.07 738 . 2 (𝜑 → (𝜑𝜑))
31, 2impbii 126 1 ((𝜑𝜑) ↔ 𝜑)
Colors of variables: wff set class
Syntax hints:  wb 105  wo 709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm4.25  759  orordi  774  orordir  775  truortru  1416  falorfal  1419  truxortru  1430  falxorfal  1433  unidm  3302  preqsn  3801  reapirr  8596  reapti  8598  lt2msq  8905  nn0ge2m1nn  9300  absext  11207  prmdvdsexp  12286  sqpweven  12313  2sqpwodd  12314
  Copyright terms: Public domain W3C validator