ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oridm GIF version

Theorem oridm 758
Description: Idempotent law for disjunction. Theorem *4.25 of [WhiteheadRussell] p. 117. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 16-Apr-2011.) (Proof shortened by Wolf Lammen, 10-Mar-2013.)
Assertion
Ref Expression
oridm ((𝜑𝜑) ↔ 𝜑)

Proof of Theorem oridm
StepHypRef Expression
1 pm1.2 757 . 2 ((𝜑𝜑) → 𝜑)
2 pm2.07 738 . 2 (𝜑 → (𝜑𝜑))
31, 2impbii 126 1 ((𝜑𝜑) ↔ 𝜑)
Colors of variables: wff set class
Syntax hints:  wb 105  wo 709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm4.25  759  orordi  774  orordir  775  truortru  1424  falorfal  1427  truxortru  1438  falxorfal  1441  unidm  3315  preqsn  3815  funopsn  5761  reapirr  8649  reapti  8651  lt2msq  8958  nn0ge2m1nn  9354  absext  11316  prmdvdsexp  12412  sqpweven  12439  2sqpwodd  12440
  Copyright terms: Public domain W3C validator