Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > oridm | GIF version |
Description: Idempotent law for disjunction. Theorem *4.25 of [WhiteheadRussell] p. 117. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 16-Apr-2011.) (Proof shortened by Wolf Lammen, 10-Mar-2013.) |
Ref | Expression |
---|---|
oridm | ⊢ ((𝜑 ∨ 𝜑) ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm1.2 751 | . 2 ⊢ ((𝜑 ∨ 𝜑) → 𝜑) | |
2 | pm2.07 732 | . 2 ⊢ (𝜑 → (𝜑 ∨ 𝜑)) | |
3 | 1, 2 | impbii 125 | 1 ⊢ ((𝜑 ∨ 𝜑) ↔ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∨ wo 703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: pm4.25 753 orordi 768 orordir 769 truortru 1400 falorfal 1403 truxortru 1414 falxorfal 1417 unidm 3270 preqsn 3762 reapirr 8496 reapti 8498 lt2msq 8802 nn0ge2m1nn 9195 absext 11027 prmdvdsexp 12102 sqpweven 12129 2sqpwodd 12130 |
Copyright terms: Public domain | W3C validator |