ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oridm GIF version

Theorem oridm 758
Description: Idempotent law for disjunction. Theorem *4.25 of [WhiteheadRussell] p. 117. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 16-Apr-2011.) (Proof shortened by Wolf Lammen, 10-Mar-2013.)
Assertion
Ref Expression
oridm ((𝜑𝜑) ↔ 𝜑)

Proof of Theorem oridm
StepHypRef Expression
1 pm1.2 757 . 2 ((𝜑𝜑) → 𝜑)
2 pm2.07 738 . 2 (𝜑 → (𝜑𝜑))
31, 2impbii 126 1 ((𝜑𝜑) ↔ 𝜑)
Colors of variables: wff set class
Syntax hints:  wb 105  wo 709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm4.25  759  orordi  774  orordir  775  truortru  1416  falorfal  1419  truxortru  1430  falxorfal  1433  unidm  3303  preqsn  3802  reapirr  8598  reapti  8600  lt2msq  8907  nn0ge2m1nn  9303  absext  11210  prmdvdsexp  12289  sqpweven  12316  2sqpwodd  12317
  Copyright terms: Public domain W3C validator