ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oridm GIF version

Theorem oridm 762
Description: Idempotent law for disjunction. Theorem *4.25 of [WhiteheadRussell] p. 117. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 16-Apr-2011.) (Proof shortened by Wolf Lammen, 10-Mar-2013.)
Assertion
Ref Expression
oridm ((𝜑𝜑) ↔ 𝜑)

Proof of Theorem oridm
StepHypRef Expression
1 pm1.2 761 . 2 ((𝜑𝜑) → 𝜑)
2 pm2.07 742 . 2 (𝜑 → (𝜑𝜑))
31, 2impbii 126 1 ((𝜑𝜑) ↔ 𝜑)
Colors of variables: wff set class
Syntax hints:  wb 105  wo 713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm4.25  763  orordi  778  orordir  779  truortru  1447  falorfal  1450  truxortru  1461  falxorfal  1464  unidm  3347  preqsn  3852  funopsn  5816  reapirr  8720  reapti  8722  lt2msq  9029  nn0ge2m1nn  9425  absext  11569  prmdvdsexp  12665  sqpweven  12692  2sqpwodd  12693
  Copyright terms: Public domain W3C validator