ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oridm GIF version

Theorem oridm 747
Description: Idempotent law for disjunction. Theorem *4.25 of [WhiteheadRussell] p. 117. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 16-Apr-2011.) (Proof shortened by Wolf Lammen, 10-Mar-2013.)
Assertion
Ref Expression
oridm ((𝜑𝜑) ↔ 𝜑)

Proof of Theorem oridm
StepHypRef Expression
1 pm1.2 746 . 2 ((𝜑𝜑) → 𝜑)
2 pm2.07 727 . 2 (𝜑 → (𝜑𝜑))
31, 2impbii 125 1 ((𝜑𝜑) ↔ 𝜑)
Colors of variables: wff set class
Syntax hints:  wb 104  wo 698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  pm4.25  748  orordi  763  orordir  764  truortru  1395  falorfal  1398  truxortru  1409  falxorfal  1412  unidm  3265  preqsn  3755  reapirr  8475  reapti  8477  lt2msq  8781  nn0ge2m1nn  9174  absext  11005  prmdvdsexp  12080  sqpweven  12107  2sqpwodd  12108
  Copyright terms: Public domain W3C validator