ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  truorfal GIF version

Theorem truorfal 1352
Description: A identity. (Contributed by Anthony Hart, 22-Oct-2010.)
Assertion
Ref Expression
truorfal ((⊤ ∨ ⊥) ↔ ⊤)

Proof of Theorem truorfal
StepHypRef Expression
1 tru 1303 . . 3
21orci 691 . 2 (⊤ ∨ ⊥)
32bitru 1311 1 ((⊤ ∨ ⊥) ↔ ⊤)
Colors of variables: wff set class
Syntax hints:  wb 104  wo 670  wtru 1300  wfal 1304
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671
This theorem depends on definitions:  df-bi 116  df-tru 1302
This theorem is referenced by:  truxorfal  1366
  Copyright terms: Public domain W3C validator