Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > truorfal | GIF version |
Description: A ∨ identity. (Contributed by Anthony Hart, 22-Oct-2010.) |
Ref | Expression |
---|---|
truorfal | ⊢ ((⊤ ∨ ⊥) ↔ ⊤) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1339 | . . 3 ⊢ ⊤ | |
2 | 1 | orci 721 | . 2 ⊢ (⊤ ∨ ⊥) |
3 | 2 | bitru 1347 | 1 ⊢ ((⊤ ∨ ⊥) ↔ ⊤) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∨ wo 698 ⊤wtru 1336 ⊥wfal 1340 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 |
This theorem depends on definitions: df-bi 116 df-tru 1338 |
This theorem is referenced by: truxorfal 1402 |
Copyright terms: Public domain | W3C validator |