Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2alim Structured version   Visualization version   GIF version

Theorem 2alim 41995
Description: Theorem *11.32 in [WhiteheadRussell] p. 162. Theorem 19.20 of [Margaris] p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 24-May-2011.)
Assertion
Ref Expression
2alim (∀𝑥𝑦(𝜑𝜓) → (∀𝑥𝑦𝜑 → ∀𝑥𝑦𝜓))

Proof of Theorem 2alim
StepHypRef Expression
1 id 22 . 2 ((𝜑𝜓) → (𝜑𝜓))
212al2imi 41991 1 (∀𝑥𝑦(𝜑𝜓) → (∀𝑥𝑦𝜑 → ∀𝑥𝑦𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-gen 1798  ax-4 1812
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator