Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2al2imi | Structured version Visualization version GIF version |
Description: Removes two universal quantifiers from a statement. (Contributed by Andrew Salmon, 24-May-2011.) |
Ref | Expression |
---|---|
2al2imi.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
2al2imi | ⊢ (∀𝑥∀𝑦𝜑 → (∀𝑥∀𝑦𝜓 → ∀𝑥∀𝑦𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2al2imi.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | al2imi 1818 | . 2 ⊢ (∀𝑦𝜑 → (∀𝑦𝜓 → ∀𝑦𝜒)) |
3 | 2 | al2imi 1818 | 1 ⊢ (∀𝑥∀𝑦𝜑 → (∀𝑥∀𝑦𝜓 → ∀𝑥∀𝑦𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1798 ax-4 1812 |
This theorem is referenced by: 2alim 41995 |
Copyright terms: Public domain | W3C validator |