|   | Mathbox for Andrew Salmon | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2al2imi | Structured version Visualization version GIF version | ||
| Description: Removes two universal quantifiers from a statement. (Contributed by Andrew Salmon, 24-May-2011.) | 
| Ref | Expression | 
|---|---|
| 2al2imi.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) | 
| Ref | Expression | 
|---|---|
| 2al2imi | ⊢ (∀𝑥∀𝑦𝜑 → (∀𝑥∀𝑦𝜓 → ∀𝑥∀𝑦𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 2al2imi.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | al2imi 1814 | . 2 ⊢ (∀𝑦𝜑 → (∀𝑦𝜓 → ∀𝑦𝜒)) | 
| 3 | 2 | al2imi 1814 | 1 ⊢ (∀𝑥∀𝑦𝜑 → (∀𝑥∀𝑦𝜓 → ∀𝑥∀𝑦𝜒)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∀wal 1537 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1794 ax-4 1808 | 
| This theorem is referenced by: 2alim 44401 | 
| Copyright terms: Public domain | W3C validator |