| Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2al2imi | Structured version Visualization version GIF version | ||
| Description: Removes two universal quantifiers from a statement. (Contributed by Andrew Salmon, 24-May-2011.) |
| Ref | Expression |
|---|---|
| 2al2imi.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| 2al2imi | ⊢ (∀𝑥∀𝑦𝜑 → (∀𝑥∀𝑦𝜓 → ∀𝑥∀𝑦𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2al2imi.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | al2imi 1815 | . 2 ⊢ (∀𝑦𝜑 → (∀𝑦𝜓 → ∀𝑦𝜒)) |
| 3 | 2 | al2imi 1815 | 1 ⊢ (∀𝑥∀𝑦𝜑 → (∀𝑥∀𝑦𝜓 → ∀𝑥∀𝑦𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1795 ax-4 1809 |
| This theorem is referenced by: 2alim 44368 |
| Copyright terms: Public domain | W3C validator |