Home | Metamath
Proof Explorer Theorem List (p. 432 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | iooiinioc 43101* | A left-open, right-closed interval expressed as the indexed intersection of open intervals. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → ∩ 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) = (𝐴(,]𝐵)) | ||
Theorem | ressiooinf 43102 | If the infimum does not belong to a set of reals, the set is a subset of the unbounded above, left-open interval, with lower bound equal to the infimum. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ 𝑆 = inf(𝐴, ℝ*, < ) & ⊢ (𝜑 → ¬ 𝑆 ∈ 𝐴) & ⊢ 𝐼 = (𝑆(,)+∞) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐼) | ||
Theorem | icogelbd 43103 | An element of a left-closed right-open interval is greater than or equal to its lower bound. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ (𝐴[,)𝐵)) ⇒ ⊢ (𝜑 → 𝐴 ≤ 𝐶) | ||
Theorem | iocleubd 43104 | An element of a left-open right-closed interval is smaller than or equal to its upper bound. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ (𝐴(,]𝐵)) ⇒ ⊢ (𝜑 → 𝐶 ≤ 𝐵) | ||
Theorem | uzinico 43105 | An upper interval of integers is the intersection of the integers with an upper part of the reals. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (𝜑 → 𝑍 = (ℤ ∩ (𝑀[,)+∞))) | ||
Theorem | preimaiocmnf 43106* | Preimage of a right-closed interval, unbounded below. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ (𝜑 → 𝐹:𝐴⟶ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) ⇒ ⊢ (𝜑 → (◡𝐹 “ (-∞(,]𝐵)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≤ 𝐵}) | ||
Theorem | uzinico2 43107 | An upper interval of integers is the intersection of a larger upper interval of integers with an upper part of the reals. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) ⇒ ⊢ (𝜑 → (ℤ≥‘𝑁) = ((ℤ≥‘𝑀) ∩ (𝑁[,)+∞))) | ||
Theorem | uzinico3 43108 | An upper interval of integers doesn't change when it's intersected with a left-closed, unbounded above interval, with the same lower bound. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (𝜑 → 𝑍 = (𝑍 ∩ (𝑀[,)+∞))) | ||
Theorem | icossico2 43109 | Condition for a closed-below, open-above interval to be a subset of a closed-below, open-above interval. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ≤ 𝐴) ⇒ ⊢ (𝜑 → (𝐴[,)𝐶) ⊆ (𝐵[,)𝐶)) | ||
Theorem | dmico 43110 | The domain of the closed-below, open-above interval function. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ dom [,) = (ℝ* × ℝ*) | ||
Theorem | ndmico 43111 | The closed-below, open-above interval function's value is empty outside of its domain. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ (¬ (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) = ∅) | ||
Theorem | uzubioo 43112* | The upper integers are unbounded above. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑋 ∈ ℝ) ⇒ ⊢ (𝜑 → ∃𝑘 ∈ (𝑋(,)+∞)𝑘 ∈ 𝑍) | ||
Theorem | uzubico 43113* | The upper integers are unbounded above. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑋 ∈ ℝ) ⇒ ⊢ (𝜑 → ∃𝑘 ∈ (𝑋[,)+∞)𝑘 ∈ 𝑍) | ||
Theorem | uzubioo2 43114* | The upper integers are unbounded above. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ ℝ ∃𝑘 ∈ (𝑥(,)+∞)𝑘 ∈ 𝑍) | ||
Theorem | uzubico2 43115* | The upper integers are unbounded above. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ ℝ ∃𝑘 ∈ (𝑥[,)+∞)𝑘 ∈ 𝑍) | ||
Theorem | iocgtlbd 43116 | An element of a left-open right-closed interval is larger than its lower bound. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ (𝐴(,]𝐵)) ⇒ ⊢ (𝜑 → 𝐴 < 𝐶) | ||
Theorem | xrtgioo2 43117 | The topology on the extended reals coincides with the standard topology on the reals, when restricted to ℝ. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
⊢ (topGen‘ran (,)) = ((ordTop‘ ≤ ) ↾t ℝ) | ||
Theorem | tgioo4 43118 | The standard topology on the reals is a subspace of the complex metric topology. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) | ||
Theorem | fsummulc1f 43119* | Closure of a finite sum of complex numbers 𝐴(𝑘). A version of fsummulc1 15506 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐵 · 𝐶) = Σ𝑘 ∈ 𝐴 (𝐵 · 𝐶)) | ||
Theorem | fsumnncl 43120* | Closure of a nonempty, finite sum of positive integers. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℕ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ ℕ) | ||
Theorem | fsumge0cl 43121* | The finite sum of nonnegative reals is a nonnegative real. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ (0[,)+∞)) | ||
Theorem | fsumf1of 43122* | Re-index a finite sum using a bijection. Same as fsumf1o 15444, but using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑛𝜑 & ⊢ (𝑘 = 𝐺 → 𝐵 = 𝐷) & ⊢ (𝜑 → 𝐶 ∈ Fin) & ⊢ (𝜑 → 𝐹:𝐶–1-1-onto→𝐴) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → (𝐹‘𝑛) = 𝐺) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑛 ∈ 𝐶 𝐷) | ||
Theorem | fsumiunss 43123* | Sum over a disjoint indexed union, intersected with a finite set 𝐷. Similar to fsumiun 15542, but here 𝐴 and 𝐵 need not be finite. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ Fin) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ ∪ 𝑥 ∈ 𝐴 (𝐵 ∩ 𝐷)𝐶 = Σ𝑥 ∈ {𝑥 ∈ 𝐴 ∣ (𝐵 ∩ 𝐷) ≠ ∅}Σ𝑘 ∈ (𝐵 ∩ 𝐷)𝐶) | ||
Theorem | fsumreclf 43124* | Closure of a finite sum of reals. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ ℝ) | ||
Theorem | fsumlessf 43125* | A shorter sum of nonnegative terms is smaller than a longer one. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐶 𝐵 ≤ Σ𝑘 ∈ 𝐴 𝐵) | ||
Theorem | fsumsupp0 43126* | Finite sum of function values, for a function of finite support. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ (𝐹 supp 0)(𝐹‘𝑘) = Σ𝑘 ∈ 𝐴 (𝐹‘𝑘)) | ||
Theorem | fsumsermpt 43127* | A finite sum expressed in terms of a partial sum of an infinite series. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ 𝐹 = (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐴) & ⊢ 𝐺 = seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴)) ⇒ ⊢ (𝜑 → 𝐹 = 𝐺) | ||
Theorem | fmul01 43128* | Multiplying a finite number of values in [ 0 , 1 ] , gives the final product itself a number in [ 0 , 1 ]. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑖𝐵 & ⊢ Ⅎ𝑖𝜑 & ⊢ 𝐴 = seq𝐿( · , 𝐵) & ⊢ (𝜑 → 𝐿 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝐿)) & ⊢ (𝜑 → 𝐾 ∈ (𝐿...𝑀)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) → (𝐵‘𝑖) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) → 0 ≤ (𝐵‘𝑖)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) → (𝐵‘𝑖) ≤ 1) ⇒ ⊢ (𝜑 → (0 ≤ (𝐴‘𝐾) ∧ (𝐴‘𝐾) ≤ 1)) | ||
Theorem | fmulcl 43129* | If ' Y ' is closed under the multiplication of two functions, then Y is closed under the multiplication ( ' X ' ) of a finite number of functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ 𝑃 = (𝑓 ∈ 𝑌, 𝑔 ∈ 𝑌 ↦ (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡)))) & ⊢ 𝑋 = (seq1(𝑃, 𝑈)‘𝑁) & ⊢ (𝜑 → 𝑁 ∈ (1...𝑀)) & ⊢ (𝜑 → 𝑈:(1...𝑀)⟶𝑌) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝑌) & ⊢ (𝜑 → 𝑇 ∈ V) ⇒ ⊢ (𝜑 → 𝑋 ∈ 𝑌) | ||
Theorem | fmuldfeqlem1 43130* | induction step for the proof of fmuldfeq 43131. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑓𝜑 & ⊢ Ⅎ𝑔𝜑 & ⊢ Ⅎ𝑡𝑌 & ⊢ 𝑃 = (𝑓 ∈ 𝑌, 𝑔 ∈ 𝑌 ↦ (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡)))) & ⊢ 𝐹 = (𝑡 ∈ 𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡))) & ⊢ (𝜑 → 𝑇 ∈ V) & ⊢ (𝜑 → 𝑈:(1...𝑀)⟶𝑌) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝑌) & ⊢ (𝜑 → 𝑁 ∈ (1...𝑀)) & ⊢ (𝜑 → (𝑁 + 1) ∈ (1...𝑀)) & ⊢ (𝜑 → ((seq1(𝑃, 𝑈)‘𝑁)‘𝑡) = (seq1( · , (𝐹‘𝑡))‘𝑁)) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑌) → 𝑓:𝑇⟶ℝ) ⇒ ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((seq1(𝑃, 𝑈)‘(𝑁 + 1))‘𝑡) = (seq1( · , (𝐹‘𝑡))‘(𝑁 + 1))) | ||
Theorem | fmuldfeq 43131* | X and Z are two equivalent definitions of the finite product of real functions. Y is a set of real functions from a common domain T, Y is closed under function multiplication and U is a finite sequence of functions in Y. M is the number of functions multiplied together. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑖𝜑 & ⊢ Ⅎ𝑡𝑌 & ⊢ 𝑃 = (𝑓 ∈ 𝑌, 𝑔 ∈ 𝑌 ↦ (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡)))) & ⊢ 𝑋 = (seq1(𝑃, 𝑈)‘𝑀) & ⊢ 𝐹 = (𝑡 ∈ 𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡))) & ⊢ 𝑍 = (𝑡 ∈ 𝑇 ↦ (seq1( · , (𝐹‘𝑡))‘𝑀)) & ⊢ (𝜑 → 𝑇 ∈ V) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑈:(1...𝑀)⟶𝑌) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑌) → 𝑓:𝑇⟶ℝ) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝑌) ⇒ ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝑋‘𝑡) = (𝑍‘𝑡)) | ||
Theorem | fmul01lt1lem1 43132* | Given a finite multiplication of values betweeen 0 and 1, a value larger than its first element is larger the whole multiplication. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑖𝐵 & ⊢ Ⅎ𝑖𝜑 & ⊢ 𝐴 = seq𝐿( · , 𝐵) & ⊢ (𝜑 → 𝐿 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝐿)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) → (𝐵‘𝑖) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) → 0 ≤ (𝐵‘𝑖)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) → (𝐵‘𝑖) ≤ 1) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → (𝐵‘𝐿) < 𝐸) ⇒ ⊢ (𝜑 → (𝐴‘𝑀) < 𝐸) | ||
Theorem | fmul01lt1lem2 43133* | Given a finite multiplication of values betweeen 0 and 1, a value 𝐸 larger than any multiplicand, is larger than the whole multiplication. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑖𝐵 & ⊢ Ⅎ𝑖𝜑 & ⊢ 𝐴 = seq𝐿( · , 𝐵) & ⊢ (𝜑 → 𝐿 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝐿)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) → (𝐵‘𝑖) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) → 0 ≤ (𝐵‘𝑖)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) → (𝐵‘𝑖) ≤ 1) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝐽 ∈ (𝐿...𝑀)) & ⊢ (𝜑 → (𝐵‘𝐽) < 𝐸) ⇒ ⊢ (𝜑 → (𝐴‘𝑀) < 𝐸) | ||
Theorem | fmul01lt1 43134* | Given a finite multiplication of values betweeen 0 and 1, a value E larger than any multiplicand, is larger than the whole multiplication. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑖𝐵 & ⊢ Ⅎ𝑖𝜑 & ⊢ Ⅎ𝑗𝐴 & ⊢ 𝐴 = seq1( · , 𝐵) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝐵:(1...𝑀)⟶ℝ) & ⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → 0 ≤ (𝐵‘𝑖)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝐵‘𝑖) ≤ 1) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → ∃𝑗 ∈ (1...𝑀)(𝐵‘𝑗) < 𝐸) ⇒ ⊢ (𝜑 → (𝐴‘𝑀) < 𝐸) | ||
Theorem | cncfmptss 43135* | A continuous complex function restricted to a subset is continuous, using maps-to notation. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→𝐵)) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) ∈ (𝐶–cn→𝐵)) | ||
Theorem | rrpsscn 43136 | The positive reals are a subset of the complex numbers. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
⊢ ℝ+ ⊆ ℂ | ||
Theorem | mulc1cncfg 43137* | A version of mulc1cncf 24077 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 30-Jun-2017.) |
⊢ Ⅎ𝑥𝐹 & ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→ℂ)) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 · (𝐹‘𝑥))) ∈ (𝐴–cn→ℂ)) | ||
Theorem | infrglb 43138* | The infimum of a nonempty bounded set of reals is the greatest lower bound. (Contributed by Glauco Siliprandi, 29-Jun-2017.) (Revised by AV, 15-Sep-2020.) |
⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) ∧ 𝐵 ∈ ℝ) → (inf(𝐴, ℝ, < ) < 𝐵 ↔ ∃𝑧 ∈ 𝐴 𝑧 < 𝐵)) | ||
Theorem | expcnfg 43139* | If 𝐹 is a complex continuous function and N is a fixed number, then F^N is continuous too. A generalization of expcncf 24098. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→ℂ)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)↑𝑁)) ∈ (𝐴–cn→ℂ)) | ||
Theorem | prodeq2ad 43140* | Equality deduction for product. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = ∏𝑘 ∈ 𝐴 𝐶) | ||
Theorem | fprodsplit1 43141* | Separate out a term in a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑘 = 𝐶) → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = (𝐷 · ∏𝑘 ∈ (𝐴 ∖ {𝐶})𝐵)) | ||
Theorem | fprodexp 43142* | Positive integer exponentiation of a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 (𝐵↑𝑁) = (∏𝑘 ∈ 𝐴 𝐵↑𝑁)) | ||
Theorem | fprodabs2 43143* | The absolute value of a finite product . (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (abs‘∏𝑘 ∈ 𝐴 𝐵) = ∏𝑘 ∈ 𝐴 (abs‘𝐵)) | ||
Theorem | fprod0 43144* | A finite product with a zero term is zero. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐶 & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ (𝑘 = 𝐾 → 𝐵 = 𝐶) & ⊢ (𝜑 → 𝐾 ∈ 𝐴) & ⊢ (𝜑 → 𝐶 = 0) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = 0) | ||
Theorem | mccllem 43145* | * Induction step for mccl 43146. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) & ⊢ (𝜑 → 𝐷 ∈ (𝐴 ∖ 𝐶)) & ⊢ (𝜑 → 𝐵 ∈ (ℕ0 ↑m (𝐶 ∪ {𝐷}))) & ⊢ (𝜑 → ∀𝑏 ∈ (ℕ0 ↑m 𝐶)((!‘Σ𝑘 ∈ 𝐶 (𝑏‘𝑘)) / ∏𝑘 ∈ 𝐶 (!‘(𝑏‘𝑘))) ∈ ℕ) ⇒ ⊢ (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵‘𝑘)) / ∏𝑘 ∈ (𝐶 ∪ {𝐷})(!‘(𝐵‘𝑘))) ∈ ℕ) | ||
Theorem | mccl 43146* | A multinomial coefficient, in its standard domain, is a positive integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ Ⅎ𝑘𝐵 & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ (ℕ0 ↑m 𝐴)) ⇒ ⊢ (𝜑 → ((!‘Σ𝑘 ∈ 𝐴 (𝐵‘𝑘)) / ∏𝑘 ∈ 𝐴 (!‘(𝐵‘𝑘))) ∈ ℕ) | ||
Theorem | fprodcnlem 43147* | A finite product of functions to complex numbers from a common topological space is continuous. Induction step. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ Ⅎ𝑘𝜑 & ⊢ 𝐾 = (TopOpen‘ℂfld) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝑍 ⊆ 𝐴) & ⊢ (𝜑 → 𝑊 ∈ (𝐴 ∖ 𝑍)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ∏𝑘 ∈ 𝑍 𝐵) ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ∏𝑘 ∈ (𝑍 ∪ {𝑊})𝐵) ∈ (𝐽 Cn 𝐾)) | ||
Theorem | fprodcn 43148* | A finite product of functions to complex numbers from a common topological space is continuous. The class expression for 𝐵 normally contains free variables 𝑘 and 𝑥 to index it. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ Ⅎ𝑘𝜑 & ⊢ 𝐾 = (TopOpen‘ℂfld) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ∏𝑘 ∈ 𝐴 𝐵) ∈ (𝐽 Cn 𝐾)) | ||
Theorem | clim1fr1 43149* | A class of sequences of fractions that converge to 1. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (((𝐴 · 𝑛) + 𝐵) / (𝐴 · 𝑛))) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → 𝐹 ⇝ 1) | ||
Theorem | isumneg 43150* | Negation of a converging sum. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 -𝐴 = -Σ𝑘 ∈ 𝑍 𝐴) | ||
Theorem | climrec 43151* | Limit of the reciprocal of a converging sequence. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐺 ⇝ 𝐴) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ (ℂ ∖ {0})) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = (1 / (𝐺‘𝑘))) & ⊢ (𝜑 → 𝐻 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐻 ⇝ (1 / 𝐴)) | ||
Theorem | climmulf 43152* | A version of climmul 15351 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ Ⅎ𝑘𝐺 & ⊢ Ⅎ𝑘𝐻 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ (𝜑 → 𝐻 ∈ 𝑋) & ⊢ (𝜑 → 𝐺 ⇝ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) · (𝐺‘𝑘))) ⇒ ⊢ (𝜑 → 𝐻 ⇝ (𝐴 · 𝐵)) | ||
Theorem | climexp 43153* | The limit of natural powers, is the natural power of the limit. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ Ⅎ𝑘𝐻 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶ℂ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐻 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘)↑𝑁)) ⇒ ⊢ (𝜑 → 𝐻 ⇝ (𝐴↑𝑁)) | ||
Theorem | climinf 43154* | A bounded monotonic nonincreasing sequence converges to the infimum of its range. (Contributed by Glauco Siliprandi, 29-Jun-2017.) (Revised by AV, 15-Sep-2020.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) ⇒ ⊢ (𝜑 → 𝐹 ⇝ inf(ran 𝐹, ℝ, < )) | ||
Theorem | climsuselem1 43155* | The subsequence index 𝐼 has the expected properties: it belongs to the same upper integers as the original index, and it is always greater than or equal to the original index. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → (𝐼‘𝑀) ∈ 𝑍) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐼‘(𝑘 + 1)) ∈ (ℤ≥‘((𝐼‘𝑘) + 1))) ⇒ ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → (𝐼‘𝐾) ∈ (ℤ≥‘𝐾)) | ||
Theorem | climsuse 43156* | A subsequence 𝐺 of a converging sequence 𝐹, converges to the same limit. 𝐼 is the strictly increasing and it is used to index the subsequence. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ Ⅎ𝑘𝐺 & ⊢ Ⅎ𝑘𝐼 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ (𝜑 → (𝐼‘𝑀) ∈ 𝑍) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐼‘(𝑘 + 1)) ∈ (ℤ≥‘((𝐼‘𝑘) + 1))) & ⊢ (𝜑 → 𝐺 ∈ 𝑌) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐹‘(𝐼‘𝑘))) ⇒ ⊢ (𝜑 → 𝐺 ⇝ 𝐴) | ||
Theorem | climrecf 43157* | A version of climrec 43151 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐺 & ⊢ Ⅎ𝑘𝐻 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐺 ⇝ 𝐴) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ (ℂ ∖ {0})) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = (1 / (𝐺‘𝑘))) & ⊢ (𝜑 → 𝐻 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐻 ⇝ (1 / 𝐴)) | ||
Theorem | climneg 43158* | Complex limit of the negative of a sequence. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) ⇒ ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ⇝ -𝐴) | ||
Theorem | climinff 43159* | A version of climinf 43154 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 29-Jun-2017.) (Revised by AV, 15-Sep-2020.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) ⇒ ⊢ (𝜑 → 𝐹 ⇝ inf(ran 𝐹, ℝ, < )) | ||
Theorem | climdivf 43160* | Limit of the ratio of two converging sequences. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ Ⅎ𝑘𝐺 & ⊢ Ⅎ𝑘𝐻 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ (𝜑 → 𝐻 ∈ 𝑋) & ⊢ (𝜑 → 𝐺 ⇝ 𝐵) & ⊢ (𝜑 → 𝐵 ≠ 0) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ (ℂ ∖ {0})) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) / (𝐺‘𝑘))) ⇒ ⊢ (𝜑 → 𝐻 ⇝ (𝐴 / 𝐵)) | ||
Theorem | climreeq 43161 | If 𝐹 is a real function, then 𝐹 converges to 𝐴 with respect to the standard topology on the reals if and only if it converges to 𝐴 with respect to the standard topology on complex numbers. In the theorem, 𝑅 is defined to be convergence w.r.t. the standard topology on the reals and then 𝐹𝑅𝐴 represents the statement "𝐹 converges to 𝐴, with respect to the standard topology on the reals". Notice that there is no need for the hypothesis that 𝐴 is a real number. (Contributed by Glauco Siliprandi, 2-Jul-2017.) |
⊢ 𝑅 = (⇝𝑡‘(topGen‘ran (,))) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) ⇒ ⊢ (𝜑 → (𝐹𝑅𝐴 ↔ 𝐹 ⇝ 𝐴)) | ||
Theorem | ellimciota 43162* | An explicit value for the limit, when the limit exists at a limit point. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐾)‘𝐴)) & ⊢ (𝜑 → (𝐹 limℂ 𝐵) ≠ ∅) & ⊢ 𝐾 = (TopOpen‘ℂfld) ⇒ ⊢ (𝜑 → (℩𝑥𝑥 ∈ (𝐹 limℂ 𝐵)) ∈ (𝐹 limℂ 𝐵)) | ||
Theorem | climaddf 43163* | A version of climadd 15350 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ Ⅎ𝑘𝐺 & ⊢ Ⅎ𝑘𝐻 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ (𝜑 → 𝐻 ∈ 𝑋) & ⊢ (𝜑 → 𝐺 ⇝ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) + (𝐺‘𝑘))) ⇒ ⊢ (𝜑 → 𝐻 ⇝ (𝐴 + 𝐵)) | ||
Theorem | mullimc 43164* | Limit of the product of two functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐶) & ⊢ 𝐻 = (𝑥 ∈ 𝐴 ↦ (𝐵 · 𝐶)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ (𝐹 limℂ 𝐷)) & ⊢ (𝜑 → 𝑌 ∈ (𝐺 limℂ 𝐷)) ⇒ ⊢ (𝜑 → (𝑋 · 𝑌) ∈ (𝐻 limℂ 𝐷)) | ||
Theorem | ellimcabssub0 43165* | An equivalent condition for being a limit. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) & ⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐶 ∈ (𝐹 limℂ 𝐷) ↔ 0 ∈ (𝐺 limℂ 𝐷))) | ||
Theorem | limcdm0 43166 | If a function has empty domain, every complex number is a limit. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:∅⟶ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐹 limℂ 𝐵) = ℂ) | ||
Theorem | islptre 43167* | An equivalence condition for a limit point w.r.t. the standard topology on the reals. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐵 ∈ ((limPt‘𝐽)‘𝐴) ↔ ∀𝑎 ∈ ℝ* ∀𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅))) | ||
Theorem | limccog 43168 | Limit of the composition of two functions. If the limit of 𝐹 at 𝐴 is 𝐵 and the limit of 𝐺 at 𝐵 is 𝐶, then the limit of 𝐺 ∘ 𝐹 at 𝐴 is 𝐶. With respect to limcco 25066 and limccnp 25064, here we drop continuity assumptions. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → ran 𝐹 ⊆ (dom 𝐺 ∖ {𝐵})) & ⊢ (𝜑 → 𝐵 ∈ (𝐹 limℂ 𝐴)) & ⊢ (𝜑 → 𝐶 ∈ (𝐺 limℂ 𝐵)) ⇒ ⊢ (𝜑 → 𝐶 ∈ ((𝐺 ∘ 𝐹) limℂ 𝐴)) | ||
Theorem | limciccioolb 43169 | The limit of a function at the lower bound of a closed interval only depends on the values in the inner open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐹:(𝐴[,]𝐵)⟶ℂ) ⇒ ⊢ (𝜑 → ((𝐹 ↾ (𝐴(,)𝐵)) limℂ 𝐴) = (𝐹 limℂ 𝐴)) | ||
Theorem | climf 43170* | Express the predicate: The limit of complex number sequence 𝐹 is 𝐴, or 𝐹 converges to 𝐴. Similar to clim 15212, but without the disjoint var constraint 𝐹𝑘. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ Ⅎ𝑘𝐹 & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → (𝐹‘𝑘) = 𝐵) ⇒ ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥)))) | ||
Theorem | mullimcf 43171* | Limit of the multiplication of two functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐺:𝐴⟶ℂ) & ⊢ 𝐻 = (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥) · (𝐺‘𝑥))) & ⊢ (𝜑 → 𝐵 ∈ (𝐹 limℂ 𝐷)) & ⊢ (𝜑 → 𝐶 ∈ (𝐺 limℂ 𝐷)) ⇒ ⊢ (𝜑 → (𝐵 · 𝐶) ∈ (𝐻 limℂ 𝐷)) | ||
Theorem | constlimc 43172* | Limit of constant function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → 𝐵 ∈ (𝐹 limℂ 𝐶)) | ||
Theorem | rexlim2d 43173* | Inference removing two restricted quantifiers. Same as rexlimdvv 3223, but with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜓 → 𝜒))) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 → 𝜒)) | ||
Theorem | idlimc 43174* | Limit of the identity function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝑥) & ⊢ (𝜑 → 𝑋 ∈ ℂ) ⇒ ⊢ (𝜑 → 𝑋 ∈ (𝐹 limℂ 𝑋)) | ||
Theorem | divcnvg 43175* | The sequence of reciprocals of positive integers, multiplied by the factor 𝐴, converges to zero. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ) → (𝑛 ∈ (ℤ≥‘𝑀) ↦ (𝐴 / 𝑛)) ⇝ 0) | ||
Theorem | limcperiod 43176* | If 𝐹 is a periodic function with period 𝑇, the limit doesn't change if we shift the limiting point by 𝑇. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:dom 𝐹⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝐴 ⊆ dom 𝐹) & ⊢ (𝜑 → 𝑇 ∈ ℂ) & ⊢ 𝐵 = {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ 𝐴 𝑥 = (𝑦 + 𝑇)} & ⊢ (𝜑 → 𝐵 ⊆ dom 𝐹) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘(𝑦 + 𝑇)) = (𝐹‘𝑦)) & ⊢ (𝜑 → 𝐶 ∈ ((𝐹 ↾ 𝐴) limℂ 𝐷)) ⇒ ⊢ (𝜑 → 𝐶 ∈ ((𝐹 ↾ 𝐵) limℂ (𝐷 + 𝑇))) | ||
Theorem | limcrecl 43177 | If 𝐹 is a real-valued function, 𝐵 is a limit point of its domain, and the limit of 𝐹 at 𝐵 exists, then this limit is real. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:𝐴⟶ℝ) & ⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘𝐴)) & ⊢ (𝜑 → 𝐿 ∈ (𝐹 limℂ 𝐵)) ⇒ ⊢ (𝜑 → 𝐿 ∈ ℝ) | ||
Theorem | sumnnodd 43178* | A series indexed by ℕ with only odd terms. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:ℕ⟶ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ ∧ (𝑘 / 2) ∈ ℕ) → (𝐹‘𝑘) = 0) & ⊢ (𝜑 → seq1( + , 𝐹) ⇝ 𝐵) ⇒ ⊢ (𝜑 → (seq1( + , (𝑘 ∈ ℕ ↦ (𝐹‘((2 · 𝑘) − 1)))) ⇝ 𝐵 ∧ Σ𝑘 ∈ ℕ (𝐹‘𝑘) = Σ𝑘 ∈ ℕ (𝐹‘((2 · 𝑘) − 1)))) | ||
Theorem | lptioo2 43179 | The upper bound of an open interval is a limit point of the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵))) | ||
Theorem | lptioo1 43180 | The lower bound of an open interval is a limit point of the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵))) | ||
Theorem | elprn1 43181 | A member of an unordered pair that is not the "first", must be the "second". (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((𝐴 ∈ {𝐵, 𝐶} ∧ 𝐴 ≠ 𝐵) → 𝐴 = 𝐶) | ||
Theorem | elprn2 43182 | A member of an unordered pair that is not the "second", must be the "first". (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((𝐴 ∈ {𝐵, 𝐶} ∧ 𝐴 ≠ 𝐶) → 𝐴 = 𝐵) | ||
Theorem | limcmptdm 43183* | The domain of a maps-to function with a limit. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ (𝐹 limℂ 𝐷)) ⇒ ⊢ (𝜑 → 𝐴 ⊆ ℂ) | ||
Theorem | clim2f 43184* | Express the predicate: The limit of complex number sequence 𝐹 is 𝐴, or 𝐹 converges to 𝐴, with more general quantifier restrictions than clim 15212. Similar to clim2 15222, but without the disjoint var constraint 𝐹𝑘. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ Ⅎ𝑘𝐹 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) ⇒ ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥)))) | ||
Theorem | limcicciooub 43185 | The limit of a function at the upper bound of a closed interval only depends on the values in the inner open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐹:(𝐴[,]𝐵)⟶ℂ) ⇒ ⊢ (𝜑 → ((𝐹 ↾ (𝐴(,)𝐵)) limℂ 𝐵) = (𝐹 limℂ 𝐵)) | ||
Theorem | ltmod 43186 | A sufficient condition for a "less than" relationship for the mod operator. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,)𝐴)) ⇒ ⊢ (𝜑 → (𝐶 mod 𝐵) < (𝐴 mod 𝐵)) | ||
Theorem | islpcn 43187* | A characterization for a limit point for the standard topology on the complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝑃 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝑃 ∈ ((limPt‘(TopOpen‘ℂfld))‘𝑆) ↔ ∀𝑒 ∈ ℝ+ ∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥 − 𝑃)) < 𝑒)) | ||
Theorem | lptre2pt 43188* | If a set in the real line has a limit point than it contains two distinct points that are closer than a given distance. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → ((limPt‘𝐽)‘𝐴) ≠ ∅) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 ∧ (abs‘(𝑥 − 𝑦)) < 𝐸)) | ||
Theorem | limsupre 43189* | If a sequence is bounded, then the limsup is real. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 13-Sep-2020.) |
⊢ (𝜑 → 𝐵 ⊆ ℝ) & ⊢ (𝜑 → sup(𝐵, ℝ*, < ) = +∞) & ⊢ (𝜑 → 𝐹:𝐵⟶ℝ) & ⊢ (𝜑 → ∃𝑏 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏)) ⇒ ⊢ (𝜑 → (lim sup‘𝐹) ∈ ℝ) | ||
Theorem | limcresiooub 43190 | The left limit doesn't change if the function is restricted to a smaller open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐵 < 𝐶) & ⊢ (𝜑 → (𝐵(,)𝐶) ⊆ 𝐴) & ⊢ (𝜑 → 𝐷 ∈ ℝ*) & ⊢ (𝜑 → 𝐷 ≤ 𝐵) ⇒ ⊢ (𝜑 → ((𝐹 ↾ (𝐵(,)𝐶)) limℂ 𝐶) = ((𝐹 ↾ (𝐷(,)𝐶)) limℂ 𝐶)) | ||
Theorem | limcresioolb 43191 | The right limit doesn't change if the function is restricted to a smaller open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 < 𝐶) & ⊢ (𝜑 → (𝐵(,)𝐶) ⊆ 𝐴) & ⊢ (𝜑 → 𝐷 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ≤ 𝐷) ⇒ ⊢ (𝜑 → ((𝐹 ↾ (𝐵(,)𝐶)) limℂ 𝐵) = ((𝐹 ↾ (𝐵(,)𝐷)) limℂ 𝐵)) | ||
Theorem | limcleqr 43192 | If the left and the right limits are equal, the limit of the function exits and the three limits coincide. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐾 = (TopOpen‘ℂfld) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) limℂ 𝐵)) & ⊢ (𝜑 → 𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) limℂ 𝐵)) & ⊢ (𝜑 → 𝐿 = 𝑅) ⇒ ⊢ (𝜑 → 𝐿 ∈ (𝐹 limℂ 𝐵)) | ||
Theorem | lptioo2cn 43193 | The upper bound of an open interval is a limit point of the interval, wirth respect to the standard topology on complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵))) | ||
Theorem | lptioo1cn 43194 | The lower bound of an open interval is a limit point of the interval, wirth respect to the standard topology on complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵))) | ||
Theorem | neglimc 43195* | Limit of the negative function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ -𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ (𝐹 limℂ 𝐷)) ⇒ ⊢ (𝜑 → -𝐶 ∈ (𝐺 limℂ 𝐷)) | ||
Theorem | addlimc 43196* | Sum of two limits. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐶) & ⊢ 𝐻 = (𝑥 ∈ 𝐴 ↦ (𝐵 + 𝐶)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐸 ∈ (𝐹 limℂ 𝐷)) & ⊢ (𝜑 → 𝐼 ∈ (𝐺 limℂ 𝐷)) ⇒ ⊢ (𝜑 → (𝐸 + 𝐼) ∈ (𝐻 limℂ 𝐷)) | ||
Theorem | 0ellimcdiv 43197* | If the numerator converges to 0 and the denominator converges to a nonzero number, then the fraction converges to 0. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐶) & ⊢ 𝐻 = (𝑥 ∈ 𝐴 ↦ (𝐵 / 𝐶)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ (ℂ ∖ {0})) & ⊢ (𝜑 → 0 ∈ (𝐹 limℂ 𝐸)) & ⊢ (𝜑 → 𝐷 ∈ (𝐺 limℂ 𝐸)) & ⊢ (𝜑 → 𝐷 ≠ 0) ⇒ ⊢ (𝜑 → 0 ∈ (𝐻 limℂ 𝐸)) | ||
Theorem | clim2cf 43198* | Express the predicate 𝐹 converges to 𝐴. Similar to clim2 15222, but without the disjoint var constraint 𝐹𝑘. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ Ⅎ𝑘𝐹 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐵 − 𝐴)) < 𝑥)) | ||
Theorem | limclner 43199 | For a limit point, both from the left and from the right, of the domain, the limit of the function exits only if the left and the right limits are equal. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐾 = (TopOpen‘ℂfld) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵)))) & ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (𝐵(,)+∞)))) & ⊢ (𝜑 → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) limℂ 𝐵)) & ⊢ (𝜑 → 𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) limℂ 𝐵)) & ⊢ (𝜑 → 𝐿 ≠ 𝑅) ⇒ ⊢ (𝜑 → (𝐹 limℂ 𝐵) = ∅) | ||
Theorem | sublimc 43200* | Subtraction of two limits. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐶) & ⊢ 𝐻 = (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐸 ∈ (𝐹 limℂ 𝐷)) & ⊢ (𝜑 → 𝐼 ∈ (𝐺 limℂ 𝐷)) ⇒ ⊢ (𝜑 → (𝐸 − 𝐼) ∈ (𝐻 limℂ 𝐷)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |