![]() |
Metamath
Proof Explorer Theorem List (p. 432 of 491) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30946) |
![]() (30947-32469) |
![]() (32470-49035) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | lnrlnm 43101 | Left-Noetherian rings have Noetherian associated modules. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
⊢ (𝐴 ∈ LNoeR → (ringLMod‘𝐴) ∈ LNoeM) | ||
Theorem | islnr2 43102* | Property of being a left-Noetherian ring in terms of finite generation of ideals (the usual "pure ring theory" definition). (Contributed by Stefan O'Rear, 24-Jan-2015.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑅) & ⊢ 𝑁 = (RSpan‘𝑅) ⇒ ⊢ (𝑅 ∈ LNoeR ↔ (𝑅 ∈ Ring ∧ ∀𝑖 ∈ 𝑈 ∃𝑔 ∈ (𝒫 𝐵 ∩ Fin)𝑖 = (𝑁‘𝑔))) | ||
Theorem | islnr3 43103 | Relate left-Noetherian rings to Noetherian-type closure property of the left ideal system. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑅) ⇒ ⊢ (𝑅 ∈ LNoeR ↔ (𝑅 ∈ Ring ∧ 𝑈 ∈ (NoeACS‘𝐵))) | ||
Theorem | lnr2i 43104* | Given an ideal in a left-Noetherian ring, there is a finite subset which generates it. (Contributed by Stefan O'Rear, 31-Mar-2015.) |
⊢ 𝑈 = (LIdeal‘𝑅) & ⊢ 𝑁 = (RSpan‘𝑅) ⇒ ⊢ ((𝑅 ∈ LNoeR ∧ 𝐼 ∈ 𝑈) → ∃𝑔 ∈ (𝒫 𝐼 ∩ Fin)𝐼 = (𝑁‘𝑔)) | ||
Theorem | lpirlnr 43105 | Left principal ideal rings are left Noetherian. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
⊢ (𝑅 ∈ LPIR → 𝑅 ∈ LNoeR) | ||
Theorem | lnrfrlm 43106 | Finite-dimensional free modules over a Noetherian ring are Noetherian. (Contributed by Stefan O'Rear, 3-Feb-2015.) |
⊢ 𝑌 = (𝑅 freeLMod 𝐼) ⇒ ⊢ ((𝑅 ∈ LNoeR ∧ 𝐼 ∈ Fin) → 𝑌 ∈ LNoeM) | ||
Theorem | lnrfg 43107 | Finitely-generated modules over a Noetherian ring, being homomorphic images of free modules, are Noetherian. (Contributed by Stefan O'Rear, 7-Feb-2015.) |
⊢ 𝑆 = (Scalar‘𝑀) ⇒ ⊢ ((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) → 𝑀 ∈ LNoeM) | ||
Theorem | lnrfgtr 43108 | A submodule of a finitely generated module over a Noetherian ring is finitely generated. Often taken as the definition of Noetherian ring. (Contributed by Stefan O'Rear, 7-Feb-2015.) |
⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 𝑈 = (LSubSp‘𝑀) & ⊢ 𝑁 = (𝑀 ↾s 𝑃) ⇒ ⊢ ((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR ∧ 𝑃 ∈ 𝑈) → 𝑁 ∈ LFinGen) | ||
Syntax | cldgis 43109 | The leading ideal sequence used in the Hilbert Basis Theorem. |
class ldgIdlSeq | ||
Definition | df-ldgis 43110* | Define a function which carries polynomial ideals to the sequence of coefficient ideals of leading coefficients of degree- 𝑥 elements in the polynomial ideal. The proof that this map is strictly monotone is the core of the Hilbert Basis Theorem hbt 43118. (Contributed by Stefan O'Rear, 31-Mar-2015.) |
⊢ ldgIdlSeq = (𝑟 ∈ V ↦ (𝑖 ∈ (LIdeal‘(Poly1‘𝑟)) ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘 ∈ 𝑖 (((deg1‘𝑟)‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))}))) | ||
Theorem | hbtlem1 43111* | Value of the leading coefficient sequence function. (Contributed by Stefan O'Rear, 31-Mar-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑃) & ⊢ 𝑆 = (ldgIdlSeq‘𝑅) & ⊢ 𝐷 = (deg1‘𝑅) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → ((𝑆‘𝐼)‘𝑋) = {𝑗 ∣ ∃𝑘 ∈ 𝐼 ((𝐷‘𝑘) ≤ 𝑋 ∧ 𝑗 = ((coe1‘𝑘)‘𝑋))}) | ||
Theorem | hbtlem2 43112 | Leading coefficient ideals are ideals. (Contributed by Stefan O'Rear, 1-Apr-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑃) & ⊢ 𝑆 = (ldgIdlSeq‘𝑅) & ⊢ 𝑇 = (LIdeal‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → ((𝑆‘𝐼)‘𝑋) ∈ 𝑇) | ||
Theorem | hbtlem7 43113 | Functionality of leading coefficient ideal sequence. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑃) & ⊢ 𝑆 = (ldgIdlSeq‘𝑅) & ⊢ 𝑇 = (LIdeal‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (𝑆‘𝐼):ℕ0⟶𝑇) | ||
Theorem | hbtlem4 43114 | The leading ideal function goes to increasing sequences. (Contributed by Stefan O'Rear, 1-Apr-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑃) & ⊢ 𝑆 = (ldgIdlSeq‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ 𝑈) & ⊢ (𝜑 → 𝑋 ∈ ℕ0) & ⊢ (𝜑 → 𝑌 ∈ ℕ0) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) ⇒ ⊢ (𝜑 → ((𝑆‘𝐼)‘𝑋) ⊆ ((𝑆‘𝐼)‘𝑌)) | ||
Theorem | hbtlem3 43115 | The leading ideal function is monotone. (Contributed by Stefan O'Rear, 31-Mar-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑃) & ⊢ 𝑆 = (ldgIdlSeq‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ 𝑈) & ⊢ (𝜑 → 𝐽 ∈ 𝑈) & ⊢ (𝜑 → 𝐼 ⊆ 𝐽) & ⊢ (𝜑 → 𝑋 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((𝑆‘𝐼)‘𝑋) ⊆ ((𝑆‘𝐽)‘𝑋)) | ||
Theorem | hbtlem5 43116* | The leading ideal function is strictly monotone. (Contributed by Stefan O'Rear, 1-Apr-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑃) & ⊢ 𝑆 = (ldgIdlSeq‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ 𝑈) & ⊢ (𝜑 → 𝐽 ∈ 𝑈) & ⊢ (𝜑 → 𝐼 ⊆ 𝐽) & ⊢ (𝜑 → ∀𝑥 ∈ ℕ0 ((𝑆‘𝐽)‘𝑥) ⊆ ((𝑆‘𝐼)‘𝑥)) ⇒ ⊢ (𝜑 → 𝐼 = 𝐽) | ||
Theorem | hbtlem6 43117* | There is a finite set of polynomials matching any single stage of the image. (Contributed by Stefan O'Rear, 1-Apr-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑃) & ⊢ 𝑆 = (ldgIdlSeq‘𝑅) & ⊢ 𝑁 = (RSpan‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ LNoeR) & ⊢ (𝜑 → 𝐼 ∈ 𝑈) & ⊢ (𝜑 → 𝑋 ∈ ℕ0) ⇒ ⊢ (𝜑 → ∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((𝑆‘𝐼)‘𝑋) ⊆ ((𝑆‘(𝑁‘𝑘))‘𝑋)) | ||
Theorem | hbt 43118 | The Hilbert Basis Theorem - the ring of univariate polynomials over a Noetherian ring is a Noetherian ring. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) ⇒ ⊢ (𝑅 ∈ LNoeR → 𝑃 ∈ LNoeR) | ||
Syntax | cmnc 43119 | Extend class notation with the class of monic polynomials. |
class Monic | ||
Syntax | cplylt 43120 | Extend class notation with the class of limited-degree polynomials. |
class Poly< | ||
Definition | df-mnc 43121* | Define the class of monic polynomials. (Contributed by Stefan O'Rear, 5-Dec-2014.) |
⊢ Monic = (𝑠 ∈ 𝒫 ℂ ↦ {𝑝 ∈ (Poly‘𝑠) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1}) | ||
Definition | df-plylt 43122* | Define the class of limited-degree polynomials. (Contributed by Stefan O'Rear, 8-Dec-2014.) |
⊢ Poly< = (𝑠 ∈ 𝒫 ℂ, 𝑥 ∈ ℕ0 ↦ {𝑝 ∈ (Poly‘𝑠) ∣ (𝑝 = 0𝑝 ∨ (deg‘𝑝) < 𝑥)}) | ||
Theorem | dgrsub2 43123 | Subtracting two polynomials with the same degree and top coefficient gives a polynomial of strictly lower degree. (Contributed by Stefan O'Rear, 25-Nov-2014.) |
⊢ 𝑁 = (deg‘𝐹) ⇒ ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁 ∧ 𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (deg‘(𝐹 ∘f − 𝐺)) < 𝑁) | ||
Theorem | elmnc 43124 | Property of a monic polynomial. (Contributed by Stefan O'Rear, 5-Dec-2014.) |
⊢ (𝑃 ∈ ( Monic ‘𝑆) ↔ (𝑃 ∈ (Poly‘𝑆) ∧ ((coeff‘𝑃)‘(deg‘𝑃)) = 1)) | ||
Theorem | mncply 43125 | A monic polynomial is a polynomial. (Contributed by Stefan O'Rear, 5-Dec-2014.) |
⊢ (𝑃 ∈ ( Monic ‘𝑆) → 𝑃 ∈ (Poly‘𝑆)) | ||
Theorem | mnccoe 43126 | A monic polynomial has leading coefficient 1. (Contributed by Stefan O'Rear, 5-Dec-2014.) |
⊢ (𝑃 ∈ ( Monic ‘𝑆) → ((coeff‘𝑃)‘(deg‘𝑃)) = 1) | ||
Theorem | mncn0 43127 | A monic polynomial is not zero. (Contributed by Stefan O'Rear, 5-Dec-2014.) |
⊢ (𝑃 ∈ ( Monic ‘𝑆) → 𝑃 ≠ 0𝑝) | ||
Syntax | cdgraa 43128 | Extend class notation to include the degree function for algebraic numbers. |
class degAA | ||
Syntax | cmpaa 43129 | Extend class notation to include the minimal polynomial for an algebraic number. |
class minPolyAA | ||
Definition | df-dgraa 43130* | Define the degree of an algebraic number as the smallest degree of any nonzero polynomial which has said number as a root. (Contributed by Stefan O'Rear, 25-Nov-2014.) (Revised by AV, 29-Sep-2020.) |
⊢ degAA = (𝑥 ∈ 𝔸 ↦ inf({𝑑 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑑 ∧ (𝑝‘𝑥) = 0)}, ℝ, < )) | ||
Definition | df-mpaa 43131* | Define the minimal polynomial of an algebraic number as the unique monic polynomial which achieves the minimum of degAA. (Contributed by Stefan O'Rear, 25-Nov-2014.) |
⊢ minPolyAA = (𝑥 ∈ 𝔸 ↦ (℩𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA‘𝑥) ∧ (𝑝‘𝑥) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝑥)) = 1))) | ||
Theorem | dgraaval 43132* | Value of the degree function on an algebraic number. (Contributed by Stefan O'Rear, 25-Nov-2014.) (Revised by AV, 29-Sep-2020.) |
⊢ (𝐴 ∈ 𝔸 → (degAA‘𝐴) = inf({𝑑 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑑 ∧ (𝑝‘𝐴) = 0)}, ℝ, < )) | ||
Theorem | dgraalem 43133* | Properties of the degree of an algebraic number. (Contributed by Stefan O'Rear, 25-Nov-2014.) (Proof shortened by AV, 29-Sep-2020.) |
⊢ (𝐴 ∈ 𝔸 → ((degAA‘𝐴) ∈ ℕ ∧ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0))) | ||
Theorem | dgraacl 43134 | Closure of the degree function on algebraic numbers. (Contributed by Stefan O'Rear, 25-Nov-2014.) |
⊢ (𝐴 ∈ 𝔸 → (degAA‘𝐴) ∈ ℕ) | ||
Theorem | dgraaf 43135 | Degree function on algebraic numbers is a function. (Contributed by Stefan O'Rear, 25-Nov-2014.) (Proof shortened by AV, 29-Sep-2020.) |
⊢ degAA:𝔸⟶ℕ | ||
Theorem | dgraaub 43136 | Upper bound on degree of an algebraic number. (Contributed by Stefan O'Rear, 25-Nov-2014.) (Proof shortened by AV, 29-Sep-2020.) |
⊢ (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0)) → (degAA‘𝐴) ≤ (deg‘𝑃)) | ||
Theorem | dgraa0p 43137 | A rational polynomial of degree less than an algebraic number cannot be zero at that number unless it is the zero polynomial. (Contributed by Stefan O'Rear, 25-Nov-2014.) |
⊢ ((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) → ((𝑃‘𝐴) = 0 ↔ 𝑃 = 0𝑝)) | ||
Theorem | mpaaeu 43138* | An algebraic number has exactly one monic polynomial of the least degree. (Contributed by Stefan O'Rear, 25-Nov-2014.) |
⊢ (𝐴 ∈ 𝔸 → ∃!𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1)) | ||
Theorem | mpaaval 43139* | Value of the minimal polynomial of an algebraic number. (Contributed by Stefan O'Rear, 25-Nov-2014.) |
⊢ (𝐴 ∈ 𝔸 → (minPolyAA‘𝐴) = (℩𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1))) | ||
Theorem | mpaalem 43140 | Properties of the minimal polynomial of an algebraic number. (Contributed by Stefan O'Rear, 25-Nov-2014.) |
⊢ (𝐴 ∈ 𝔸 → ((minPolyAA‘𝐴) ∈ (Poly‘ℚ) ∧ ((deg‘(minPolyAA‘𝐴)) = (degAA‘𝐴) ∧ ((minPolyAA‘𝐴)‘𝐴) = 0 ∧ ((coeff‘(minPolyAA‘𝐴))‘(degAA‘𝐴)) = 1))) | ||
Theorem | mpaacl 43141 | Minimal polynomial is a polynomial. (Contributed by Stefan O'Rear, 25-Nov-2014.) |
⊢ (𝐴 ∈ 𝔸 → (minPolyAA‘𝐴) ∈ (Poly‘ℚ)) | ||
Theorem | mpaadgr 43142 | Minimal polynomial has degree the degree of the number. (Contributed by Stefan O'Rear, 25-Nov-2014.) |
⊢ (𝐴 ∈ 𝔸 → (deg‘(minPolyAA‘𝐴)) = (degAA‘𝐴)) | ||
Theorem | mpaaroot 43143 | The minimal polynomial of an algebraic number has the number as a root. (Contributed by Stefan O'Rear, 25-Nov-2014.) |
⊢ (𝐴 ∈ 𝔸 → ((minPolyAA‘𝐴)‘𝐴) = 0) | ||
Theorem | mpaamn 43144 | Minimal polynomial is monic. (Contributed by Stefan O'Rear, 25-Nov-2014.) |
⊢ (𝐴 ∈ 𝔸 → ((coeff‘(minPolyAA‘𝐴))‘(degAA‘𝐴)) = 1) | ||
Syntax | citgo 43145 | Extend class notation with the integral-over predicate. |
class IntgOver | ||
Syntax | cza 43146 | Extend class notation with the class of algebraic integers. |
class ℤ | ||
Definition | df-itgo 43147* | A complex number is said to be integral over a subset if it is the root of a monic polynomial with coefficients from the subset. This definition is typically not used for fields but it works there, see aaitgo 43150. This definition could work for subsets of an arbitrary ring with a more general definition of polynomials. TODO: use Monic. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
⊢ IntgOver = (𝑠 ∈ 𝒫 ℂ ↦ {𝑥 ∈ ℂ ∣ ∃𝑝 ∈ (Poly‘𝑠)((𝑝‘𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)}) | ||
Definition | df-za 43148 | Define an algebraic integer as a complex number which is the root of a monic integer polynomial. (Contributed by Stefan O'Rear, 30-Nov-2014.) |
⊢ ℤ = (IntgOver‘ℤ) | ||
Theorem | itgoval 43149* | Value of the integral-over function. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
⊢ (𝑆 ⊆ ℂ → (IntgOver‘𝑆) = {𝑥 ∈ ℂ ∣ ∃𝑝 ∈ (Poly‘𝑆)((𝑝‘𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)}) | ||
Theorem | aaitgo 43150 | The standard algebraic numbers 𝔸 are generated by IntgOver. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
⊢ 𝔸 = (IntgOver‘ℚ) | ||
Theorem | itgoss 43151 | An integral element is integral over a subset. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (IntgOver‘𝑆) ⊆ (IntgOver‘𝑇)) | ||
Theorem | itgocn 43152 | All integral elements are complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
⊢ (IntgOver‘𝑆) ⊆ ℂ | ||
Theorem | cnsrexpcl 43153 | Exponentiation is closed in number rings. (Contributed by Stefan O'Rear, 30-Nov-2014.) |
⊢ (𝜑 → 𝑆 ∈ (SubRing‘ℂfld)) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → 𝑌 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝑋↑𝑌) ∈ 𝑆) | ||
Theorem | fsumcnsrcl 43154* | Finite sums are closed in number rings. (Contributed by Stefan O'Rear, 30-Nov-2014.) |
⊢ (𝜑 → 𝑆 ∈ (SubRing‘ℂfld)) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑆) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) | ||
Theorem | cnsrplycl 43155 | Polynomials are closed in number rings. (Contributed by Stefan O'Rear, 30-Nov-2014.) |
⊢ (𝜑 → 𝑆 ∈ (SubRing‘ℂfld)) & ⊢ (𝜑 → 𝑃 ∈ (Poly‘𝐶)) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → 𝐶 ⊆ 𝑆) ⇒ ⊢ (𝜑 → (𝑃‘𝑋) ∈ 𝑆) | ||
Theorem | rgspnid 43156 | The span of a subring is itself. (Contributed by Stefan O'Rear, 30-Nov-2014.) |
⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐴 ∈ (SubRing‘𝑅)) & ⊢ (𝜑 → 𝑆 = ((RingSpan‘𝑅)‘𝐴)) ⇒ ⊢ (𝜑 → 𝑆 = 𝐴) | ||
Theorem | rngunsnply 43157* | Adjoining one element to a ring results in a set of polynomial evaluations. (Contributed by Stefan O'Rear, 30-Nov-2014.) |
⊢ (𝜑 → 𝐵 ∈ (SubRing‘ℂfld)) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑆 = ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋}))) ⇒ ⊢ (𝜑 → (𝑉 ∈ 𝑆 ↔ ∃𝑝 ∈ (Poly‘𝐵)𝑉 = (𝑝‘𝑋))) | ||
Theorem | flcidc 43158* | Finite linear combinations with an indicator function. (Contributed by Stefan O'Rear, 5-Dec-2014.) |
⊢ (𝜑 → 𝐹 = (𝑗 ∈ 𝑆 ↦ if(𝑗 = 𝐾, 1, 0))) & ⊢ (𝜑 → 𝑆 ∈ Fin) & ⊢ (𝜑 → 𝐾 ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑆) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑖 ∈ 𝑆 ((𝐹‘𝑖) · 𝐵) = ⦋𝐾 / 𝑖⦌𝐵) | ||
Syntax | cmend 43159 | Syntax for module endomorphism algebra. |
class MEndo | ||
Definition | df-mend 43160* | Define the endomorphism algebra of a module. (Contributed by Stefan O'Rear, 2-Sep-2015.) |
⊢ MEndo = (𝑚 ∈ V ↦ ⦋(𝑚 LMHom 𝑚) / 𝑏⦌({〈(Base‘ndx), 𝑏〉, 〈(+g‘ndx), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 ∘f (+g‘𝑚)𝑦))〉, 〈(.r‘ndx), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 ∘ 𝑦))〉} ∪ {〈(Scalar‘ndx), (Scalar‘𝑚)〉, 〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦 ∈ 𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘f ( ·𝑠 ‘𝑚)𝑦))〉})) | ||
Theorem | algstr 43161 | Lemma to shorten proofs of algbase 43162 through algvsca 43166. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ 𝐴 Struct 〈1, 6〉 | ||
Theorem | algbase 43162 | The base set of a constructed algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝐴)) | ||
Theorem | algaddg 43163 | The additive operation of a constructed algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ ( + ∈ 𝑉 → + = (+g‘𝐴)) | ||
Theorem | algmulr 43164 | The multiplicative operation of a constructed algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ ( × ∈ 𝑉 → × = (.r‘𝐴)) | ||
Theorem | algsca 43165 | The set of scalars of a constructed algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ (𝑆 ∈ 𝑉 → 𝑆 = (Scalar‘𝐴)) | ||
Theorem | algvsca 43166 | The scalar product operation of a constructed algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ ( · ∈ 𝑉 → · = ( ·𝑠 ‘𝐴)) | ||
Theorem | mendval 43167* | Value of the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015.) |
⊢ 𝐵 = (𝑀 LMHom 𝑀) & ⊢ + = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ∘f (+g‘𝑀)𝑦)) & ⊢ × = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ∘ 𝑦)) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ · = (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ 𝐵 ↦ (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠 ‘𝑀)𝑦)) ⇒ ⊢ (𝑀 ∈ 𝑋 → (MEndo‘𝑀) = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉})) | ||
Theorem | mendbas 43168 | Base set of the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015.) |
⊢ 𝐴 = (MEndo‘𝑀) ⇒ ⊢ (𝑀 LMHom 𝑀) = (Base‘𝐴) | ||
Theorem | mendplusgfval 43169* | Addition in the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015.) (Proof shortened by AV, 31-Oct-2024.) |
⊢ 𝐴 = (MEndo‘𝑀) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ + = (+g‘𝑀) ⇒ ⊢ (+g‘𝐴) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ∘f + 𝑦)) | ||
Theorem | mendplusg 43170 | A specific addition in the module endomorphism algebra. (Contributed by Stefan O'Rear, 3-Sep-2015.) |
⊢ 𝐴 = (MEndo‘𝑀) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ + = (+g‘𝑀) & ⊢ ✚ = (+g‘𝐴) ⇒ ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ✚ 𝑌) = (𝑋 ∘f + 𝑌)) | ||
Theorem | mendmulrfval 43171* | Multiplication in the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015.) (Proof shortened by AV, 31-Oct-2024.) |
⊢ 𝐴 = (MEndo‘𝑀) & ⊢ 𝐵 = (Base‘𝐴) ⇒ ⊢ (.r‘𝐴) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ∘ 𝑦)) | ||
Theorem | mendmulr 43172 | A specific multiplication in the module endormoprhism algebra. (Contributed by Stefan O'Rear, 3-Sep-2015.) |
⊢ 𝐴 = (MEndo‘𝑀) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ · = (.r‘𝐴) ⇒ ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) = (𝑋 ∘ 𝑌)) | ||
Theorem | mendsca 43173 | The module endomorphism algebra has the same scalars as the underlying module. (Contributed by Stefan O'Rear, 2-Sep-2015.) (Proof shortened by AV, 31-Oct-2024.) |
⊢ 𝐴 = (MEndo‘𝑀) & ⊢ 𝑆 = (Scalar‘𝑀) ⇒ ⊢ 𝑆 = (Scalar‘𝐴) | ||
Theorem | mendvscafval 43174* | Scalar multiplication in the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015.) (Proof shortened by AV, 31-Oct-2024.) |
⊢ 𝐴 = (MEndo‘𝑀) & ⊢ · = ( ·𝑠 ‘𝑀) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝐸 = (Base‘𝑀) ⇒ ⊢ ( ·𝑠 ‘𝐴) = (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦)) | ||
Theorem | mendvsca 43175 | A specific scalar multiplication in the module endomorphism algebra. (Contributed by Stefan O'Rear, 3-Sep-2015.) |
⊢ 𝐴 = (MEndo‘𝑀) & ⊢ · = ( ·𝑠 ‘𝑀) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝐸 = (Base‘𝑀) & ⊢ ∙ = ( ·𝑠 ‘𝐴) ⇒ ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∙ 𝑌) = ((𝐸 × {𝑋}) ∘f · 𝑌)) | ||
Theorem | mendring 43176 | The module endomorphism algebra is a ring. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ 𝐴 = (MEndo‘𝑀) ⇒ ⊢ (𝑀 ∈ LMod → 𝐴 ∈ Ring) | ||
Theorem | mendlmod 43177 | The module endomorphism algebra is a left module. (Contributed by Mario Carneiro, 22-Sep-2015.) |
⊢ 𝐴 = (MEndo‘𝑀) & ⊢ 𝑆 = (Scalar‘𝑀) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → 𝐴 ∈ LMod) | ||
Theorem | mendassa 43178 | The module endomorphism algebra is an algebra. (Contributed by Mario Carneiro, 22-Sep-2015.) |
⊢ 𝐴 = (MEndo‘𝑀) & ⊢ 𝑆 = (Scalar‘𝑀) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → 𝐴 ∈ AssAlg) | ||
Theorem | idomodle 43179* | Limit on the number of 𝑁-th roots of unity in an integral domain. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
⊢ 𝐺 = ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) ⇒ ⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → (♯‘{𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁}) ≤ 𝑁) | ||
Theorem | fiuneneq 43180 | Two finite sets of equal size have a union of the same size iff they were equal. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Fin) → ((𝐴 ∪ 𝐵) ≈ 𝐴 ↔ 𝐴 = 𝐵)) | ||
Theorem | idomsubgmo 43181* | The units of an integral domain have at most one subgroup of any single finite cardinality. (Contributed by Stefan O'Rear, 12-Sep-2015.) (Revised by NM, 17-Jun-2017.) |
⊢ 𝐺 = ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ⇒ ⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → ∃*𝑦 ∈ (SubGrp‘𝐺)(♯‘𝑦) = 𝑁) | ||
Theorem | proot1mul 43182 | Any primitive 𝑁-th root of unity is a multiple of any other. (Contributed by Stefan O'Rear, 2-Nov-2015.) |
⊢ 𝐺 = ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) & ⊢ 𝑂 = (od‘𝐺) & ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) ⇒ ⊢ (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑋 ∈ (◡𝑂 “ {𝑁}) ∧ 𝑌 ∈ (◡𝑂 “ {𝑁}))) → 𝑋 ∈ (𝐾‘{𝑌})) | ||
Theorem | proot1hash 43183 | If an integral domain has a primitive 𝑁-th root of unity, it has exactly (ϕ‘𝑁) of them. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
⊢ 𝐺 = ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) & ⊢ 𝑂 = (od‘𝐺) ⇒ ⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (◡𝑂 “ {𝑁})) → (♯‘(◡𝑂 “ {𝑁})) = (ϕ‘𝑁)) | ||
Theorem | proot1ex 43184 | The complex field has primitive 𝑁-th roots of unity for all 𝑁. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
⊢ 𝐺 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) & ⊢ 𝑂 = (od‘𝐺) ⇒ ⊢ (𝑁 ∈ ℕ → (-1↑𝑐(2 / 𝑁)) ∈ (◡𝑂 “ {𝑁})) | ||
Syntax | ccytp 43185 | Syntax for the sequence of cyclotomic polynomials. |
class CytP | ||
Definition | df-cytp 43186* | The Nth cyclotomic polynomial is the polynomial which has as its zeros precisely the primitive Nth roots of unity. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ CytP = (𝑛 ∈ ℕ ↦ ((mulGrp‘(Poly1‘ℂfld)) Σg (𝑟 ∈ (◡(od‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) “ {𝑛}) ↦ ((var1‘ℂfld)(-g‘(Poly1‘ℂfld))((algSc‘(Poly1‘ℂfld))‘𝑟))))) | ||
Theorem | mon1psubm 43187 | Monic polynomials are a multiplicative submonoid. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑀 = (Monic1p‘𝑅) & ⊢ 𝑈 = (mulGrp‘𝑃) ⇒ ⊢ (𝑅 ∈ NzRing → 𝑀 ∈ (SubMnd‘𝑈)) | ||
Theorem | deg1mhm 43188 | Homomorphic property of the polynomial degree. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 0 = (0g‘𝑃) & ⊢ 𝑌 = ((mulGrp‘𝑃) ↾s (𝐵 ∖ { 0 })) & ⊢ 𝑁 = (ℂfld ↾s ℕ0) ⇒ ⊢ (𝑅 ∈ Domn → (𝐷 ↾ (𝐵 ∖ { 0 })) ∈ (𝑌 MndHom 𝑁)) | ||
Theorem | cytpfn 43189 | Functionality of the cyclotomic polynomial sequence. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ CytP Fn ℕ | ||
Theorem | cytpval 43190* | Substitutions for the Nth cyclotomic polynomial. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ 𝑇 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) & ⊢ 𝑂 = (od‘𝑇) & ⊢ 𝑃 = (Poly1‘ℂfld) & ⊢ 𝑋 = (var1‘ℂfld) & ⊢ 𝑄 = (mulGrp‘𝑃) & ⊢ − = (-g‘𝑃) & ⊢ 𝐴 = (algSc‘𝑃) ⇒ ⊢ (𝑁 ∈ ℕ → (CytP‘𝑁) = (𝑄 Σg (𝑟 ∈ (◡𝑂 “ {𝑁}) ↦ (𝑋 − (𝐴‘𝑟))))) | ||
Theorem | fgraphopab 43191* | Express a function as a subset of the Cartesian product. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
⊢ (𝐹:𝐴⟶𝐵 → 𝐹 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) ∧ (𝐹‘𝑎) = 𝑏)}) | ||
Theorem | fgraphxp 43192* | Express a function as a subset of the Cartesian product. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
⊢ (𝐹:𝐴⟶𝐵 → 𝐹 = {𝑥 ∈ (𝐴 × 𝐵) ∣ (𝐹‘(1st ‘𝑥)) = (2nd ‘𝑥)}) | ||
Theorem | hausgraph 43193 | The graph of a continuous function into a Hausdorff space is closed. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
⊢ ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 ∈ (Clsd‘(𝐽 ×t 𝐾))) | ||
Syntax | ctopsep 43194 | The class of separable topologies. |
class TopSep | ||
Syntax | ctoplnd 43195 | The class of Lindelöf topologies. |
class TopLnd | ||
Definition | df-topsep 43196* | A topology is separable iff it has a countable dense subset. (Contributed by Stefan O'Rear, 8-Jan-2015.) |
⊢ TopSep = {𝑗 ∈ Top ∣ ∃𝑥 ∈ 𝒫 ∪ 𝑗(𝑥 ≼ ω ∧ ((cls‘𝑗)‘𝑥) = ∪ 𝑗)} | ||
Definition | df-toplnd 43197* | A topology is Lindelöf iff every open cover has a countable subcover. (Contributed by Stefan O'Rear, 8-Jan-2015.) |
⊢ TopLnd = {𝑥 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑥(∪ 𝑥 = ∪ 𝑦 → ∃𝑧 ∈ 𝒫 𝑥(𝑧 ≼ ω ∧ ∪ 𝑥 = ∪ 𝑧))} | ||
Theorem | r1sssucd 43198 | Deductive form of r1sssuc 9820. (Contributed by Noam Pasman, 19-Jan-2025.) |
⊢ (𝜑 → 𝐴 ∈ On) ⇒ ⊢ (𝜑 → (𝑅1‘𝐴) ⊆ (𝑅1‘suc 𝐴)) | ||
Theorem | iocunico 43199 | Split an open interval into two pieces at point B, Co-author TA. (Contributed by Jon Pennant, 8-Jun-2019.) |
⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ 𝐵 < 𝐶)) → ((𝐴(,]𝐵) ∪ (𝐵[,)𝐶)) = (𝐴(,)𝐶)) | ||
Theorem | iocinico 43200 | The intersection of two sets that meet at a point is that point. (Contributed by Jon Pennant, 12-Jun-2019.) |
⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ 𝐵 < 𝐶)) → ((𝐴(,]𝐵) ∩ (𝐵[,)𝐶)) = {𝐵}) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |