| Metamath
Proof Explorer Theorem List (p. 432 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | hbt 43101 | The Hilbert Basis Theorem - the ring of univariate polynomials over a Noetherian ring is a Noetherian ring. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) ⇒ ⊢ (𝑅 ∈ LNoeR → 𝑃 ∈ LNoeR) | ||
| Syntax | cmnc 43102 | Extend class notation with the class of monic polynomials. |
| class Monic | ||
| Syntax | cplylt 43103 | Extend class notation with the class of limited-degree polynomials. |
| class Poly< | ||
| Definition | df-mnc 43104* | Define the class of monic polynomials. (Contributed by Stefan O'Rear, 5-Dec-2014.) |
| ⊢ Monic = (𝑠 ∈ 𝒫 ℂ ↦ {𝑝 ∈ (Poly‘𝑠) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1}) | ||
| Definition | df-plylt 43105* | Define the class of limited-degree polynomials. (Contributed by Stefan O'Rear, 8-Dec-2014.) |
| ⊢ Poly< = (𝑠 ∈ 𝒫 ℂ, 𝑥 ∈ ℕ0 ↦ {𝑝 ∈ (Poly‘𝑠) ∣ (𝑝 = 0𝑝 ∨ (deg‘𝑝) < 𝑥)}) | ||
| Theorem | dgrsub2 43106 | Subtracting two polynomials with the same degree and top coefficient gives a polynomial of strictly lower degree. (Contributed by Stefan O'Rear, 25-Nov-2014.) |
| ⊢ 𝑁 = (deg‘𝐹) ⇒ ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁 ∧ 𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (deg‘(𝐹 ∘f − 𝐺)) < 𝑁) | ||
| Theorem | elmnc 43107 | Property of a monic polynomial. (Contributed by Stefan O'Rear, 5-Dec-2014.) |
| ⊢ (𝑃 ∈ ( Monic ‘𝑆) ↔ (𝑃 ∈ (Poly‘𝑆) ∧ ((coeff‘𝑃)‘(deg‘𝑃)) = 1)) | ||
| Theorem | mncply 43108 | A monic polynomial is a polynomial. (Contributed by Stefan O'Rear, 5-Dec-2014.) |
| ⊢ (𝑃 ∈ ( Monic ‘𝑆) → 𝑃 ∈ (Poly‘𝑆)) | ||
| Theorem | mnccoe 43109 | A monic polynomial has leading coefficient 1. (Contributed by Stefan O'Rear, 5-Dec-2014.) |
| ⊢ (𝑃 ∈ ( Monic ‘𝑆) → ((coeff‘𝑃)‘(deg‘𝑃)) = 1) | ||
| Theorem | mncn0 43110 | A monic polynomial is not zero. (Contributed by Stefan O'Rear, 5-Dec-2014.) |
| ⊢ (𝑃 ∈ ( Monic ‘𝑆) → 𝑃 ≠ 0𝑝) | ||
| Syntax | cdgraa 43111 | Extend class notation to include the degree function for algebraic numbers. |
| class degAA | ||
| Syntax | cmpaa 43112 | Extend class notation to include the minimal polynomial for an algebraic number. |
| class minPolyAA | ||
| Definition | df-dgraa 43113* | Define the degree of an algebraic number as the smallest degree of any nonzero polynomial which has said number as a root. (Contributed by Stefan O'Rear, 25-Nov-2014.) (Revised by AV, 29-Sep-2020.) |
| ⊢ degAA = (𝑥 ∈ 𝔸 ↦ inf({𝑑 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑑 ∧ (𝑝‘𝑥) = 0)}, ℝ, < )) | ||
| Definition | df-mpaa 43114* | Define the minimal polynomial of an algebraic number as the unique monic polynomial which achieves the minimum of degAA. (Contributed by Stefan O'Rear, 25-Nov-2014.) |
| ⊢ minPolyAA = (𝑥 ∈ 𝔸 ↦ (℩𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA‘𝑥) ∧ (𝑝‘𝑥) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝑥)) = 1))) | ||
| Theorem | dgraaval 43115* | Value of the degree function on an algebraic number. (Contributed by Stefan O'Rear, 25-Nov-2014.) (Revised by AV, 29-Sep-2020.) |
| ⊢ (𝐴 ∈ 𝔸 → (degAA‘𝐴) = inf({𝑑 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑑 ∧ (𝑝‘𝐴) = 0)}, ℝ, < )) | ||
| Theorem | dgraalem 43116* | Properties of the degree of an algebraic number. (Contributed by Stefan O'Rear, 25-Nov-2014.) (Proof shortened by AV, 29-Sep-2020.) |
| ⊢ (𝐴 ∈ 𝔸 → ((degAA‘𝐴) ∈ ℕ ∧ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0))) | ||
| Theorem | dgraacl 43117 | Closure of the degree function on algebraic numbers. (Contributed by Stefan O'Rear, 25-Nov-2014.) |
| ⊢ (𝐴 ∈ 𝔸 → (degAA‘𝐴) ∈ ℕ) | ||
| Theorem | dgraaf 43118 | Degree function on algebraic numbers is a function. (Contributed by Stefan O'Rear, 25-Nov-2014.) (Proof shortened by AV, 29-Sep-2020.) |
| ⊢ degAA:𝔸⟶ℕ | ||
| Theorem | dgraaub 43119 | Upper bound on degree of an algebraic number. (Contributed by Stefan O'Rear, 25-Nov-2014.) (Proof shortened by AV, 29-Sep-2020.) |
| ⊢ (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0)) → (degAA‘𝐴) ≤ (deg‘𝑃)) | ||
| Theorem | dgraa0p 43120 | A rational polynomial of degree less than an algebraic number cannot be zero at that number unless it is the zero polynomial. (Contributed by Stefan O'Rear, 25-Nov-2014.) |
| ⊢ ((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) → ((𝑃‘𝐴) = 0 ↔ 𝑃 = 0𝑝)) | ||
| Theorem | mpaaeu 43121* | An algebraic number has exactly one monic polynomial of the least degree. (Contributed by Stefan O'Rear, 25-Nov-2014.) |
| ⊢ (𝐴 ∈ 𝔸 → ∃!𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1)) | ||
| Theorem | mpaaval 43122* | Value of the minimal polynomial of an algebraic number. (Contributed by Stefan O'Rear, 25-Nov-2014.) |
| ⊢ (𝐴 ∈ 𝔸 → (minPolyAA‘𝐴) = (℩𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1))) | ||
| Theorem | mpaalem 43123 | Properties of the minimal polynomial of an algebraic number. (Contributed by Stefan O'Rear, 25-Nov-2014.) |
| ⊢ (𝐴 ∈ 𝔸 → ((minPolyAA‘𝐴) ∈ (Poly‘ℚ) ∧ ((deg‘(minPolyAA‘𝐴)) = (degAA‘𝐴) ∧ ((minPolyAA‘𝐴)‘𝐴) = 0 ∧ ((coeff‘(minPolyAA‘𝐴))‘(degAA‘𝐴)) = 1))) | ||
| Theorem | mpaacl 43124 | Minimal polynomial is a polynomial. (Contributed by Stefan O'Rear, 25-Nov-2014.) |
| ⊢ (𝐴 ∈ 𝔸 → (minPolyAA‘𝐴) ∈ (Poly‘ℚ)) | ||
| Theorem | mpaadgr 43125 | Minimal polynomial has degree the degree of the number. (Contributed by Stefan O'Rear, 25-Nov-2014.) |
| ⊢ (𝐴 ∈ 𝔸 → (deg‘(minPolyAA‘𝐴)) = (degAA‘𝐴)) | ||
| Theorem | mpaaroot 43126 | The minimal polynomial of an algebraic number has the number as a root. (Contributed by Stefan O'Rear, 25-Nov-2014.) |
| ⊢ (𝐴 ∈ 𝔸 → ((minPolyAA‘𝐴)‘𝐴) = 0) | ||
| Theorem | mpaamn 43127 | Minimal polynomial is monic. (Contributed by Stefan O'Rear, 25-Nov-2014.) |
| ⊢ (𝐴 ∈ 𝔸 → ((coeff‘(minPolyAA‘𝐴))‘(degAA‘𝐴)) = 1) | ||
| Syntax | citgo 43128 | Extend class notation with the integral-over predicate. |
| class IntgOver | ||
| Syntax | cza 43129 | Extend class notation with the class of algebraic integers. |
| class ℤ | ||
| Definition | df-itgo 43130* | A complex number is said to be integral over a subset if it is the root of a monic polynomial with coefficients from the subset. This definition is typically not used for fields but it works there, see aaitgo 43133. This definition could work for subsets of an arbitrary ring with a more general definition of polynomials. TODO: use Monic. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| ⊢ IntgOver = (𝑠 ∈ 𝒫 ℂ ↦ {𝑥 ∈ ℂ ∣ ∃𝑝 ∈ (Poly‘𝑠)((𝑝‘𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)}) | ||
| Definition | df-za 43131 | Define an algebraic integer as a complex number which is the root of a monic integer polynomial. (Contributed by Stefan O'Rear, 30-Nov-2014.) |
| ⊢ ℤ = (IntgOver‘ℤ) | ||
| Theorem | itgoval 43132* | Value of the integral-over function. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| ⊢ (𝑆 ⊆ ℂ → (IntgOver‘𝑆) = {𝑥 ∈ ℂ ∣ ∃𝑝 ∈ (Poly‘𝑆)((𝑝‘𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)}) | ||
| Theorem | aaitgo 43133 | The standard algebraic numbers 𝔸 are generated by IntgOver. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| ⊢ 𝔸 = (IntgOver‘ℚ) | ||
| Theorem | itgoss 43134 | An integral element is integral over a subset. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (IntgOver‘𝑆) ⊆ (IntgOver‘𝑇)) | ||
| Theorem | itgocn 43135 | All integral elements are complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| ⊢ (IntgOver‘𝑆) ⊆ ℂ | ||
| Theorem | cnsrexpcl 43136 | Exponentiation is closed in number rings. (Contributed by Stefan O'Rear, 30-Nov-2014.) |
| ⊢ (𝜑 → 𝑆 ∈ (SubRing‘ℂfld)) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → 𝑌 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝑋↑𝑌) ∈ 𝑆) | ||
| Theorem | fsumcnsrcl 43137* | Finite sums are closed in number rings. (Contributed by Stefan O'Rear, 30-Nov-2014.) |
| ⊢ (𝜑 → 𝑆 ∈ (SubRing‘ℂfld)) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑆) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) | ||
| Theorem | cnsrplycl 43138 | Polynomials are closed in number rings. (Contributed by Stefan O'Rear, 30-Nov-2014.) |
| ⊢ (𝜑 → 𝑆 ∈ (SubRing‘ℂfld)) & ⊢ (𝜑 → 𝑃 ∈ (Poly‘𝐶)) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → 𝐶 ⊆ 𝑆) ⇒ ⊢ (𝜑 → (𝑃‘𝑋) ∈ 𝑆) | ||
| Theorem | rgspnid 43139 | The span of a subring is itself. (Contributed by Stefan O'Rear, 30-Nov-2014.) |
| ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐴 ∈ (SubRing‘𝑅)) & ⊢ (𝜑 → 𝑆 = ((RingSpan‘𝑅)‘𝐴)) ⇒ ⊢ (𝜑 → 𝑆 = 𝐴) | ||
| Theorem | rngunsnply 43140* | Adjoining one element to a ring results in a set of polynomial evaluations. (Contributed by Stefan O'Rear, 30-Nov-2014.) |
| ⊢ (𝜑 → 𝐵 ∈ (SubRing‘ℂfld)) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑆 = ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋}))) ⇒ ⊢ (𝜑 → (𝑉 ∈ 𝑆 ↔ ∃𝑝 ∈ (Poly‘𝐵)𝑉 = (𝑝‘𝑋))) | ||
| Theorem | flcidc 43141* | Finite linear combinations with an indicator function. (Contributed by Stefan O'Rear, 5-Dec-2014.) |
| ⊢ (𝜑 → 𝐹 = (𝑗 ∈ 𝑆 ↦ if(𝑗 = 𝐾, 1, 0))) & ⊢ (𝜑 → 𝑆 ∈ Fin) & ⊢ (𝜑 → 𝐾 ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑆) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑖 ∈ 𝑆 ((𝐹‘𝑖) · 𝐵) = ⦋𝐾 / 𝑖⦌𝐵) | ||
| Syntax | cmend 43142 | Syntax for module endomorphism algebra. |
| class MEndo | ||
| Definition | df-mend 43143* | Define the endomorphism algebra of a module. (Contributed by Stefan O'Rear, 2-Sep-2015.) |
| ⊢ MEndo = (𝑚 ∈ V ↦ ⦋(𝑚 LMHom 𝑚) / 𝑏⦌({〈(Base‘ndx), 𝑏〉, 〈(+g‘ndx), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 ∘f (+g‘𝑚)𝑦))〉, 〈(.r‘ndx), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 ∘ 𝑦))〉} ∪ {〈(Scalar‘ndx), (Scalar‘𝑚)〉, 〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦 ∈ 𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘f ( ·𝑠 ‘𝑚)𝑦))〉})) | ||
| Theorem | algstr 43144 | Lemma to shorten proofs of algbase 43145 through algvsca 43149. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ 𝐴 Struct 〈1, 6〉 | ||
| Theorem | algbase 43145 | The base set of a constructed algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝐴)) | ||
| Theorem | algaddg 43146 | The additive operation of a constructed algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ ( + ∈ 𝑉 → + = (+g‘𝐴)) | ||
| Theorem | algmulr 43147 | The multiplicative operation of a constructed algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ ( × ∈ 𝑉 → × = (.r‘𝐴)) | ||
| Theorem | algsca 43148 | The set of scalars of a constructed algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ (𝑆 ∈ 𝑉 → 𝑆 = (Scalar‘𝐴)) | ||
| Theorem | algvsca 43149 | The scalar product operation of a constructed algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ ( · ∈ 𝑉 → · = ( ·𝑠 ‘𝐴)) | ||
| Theorem | mendval 43150* | Value of the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015.) |
| ⊢ 𝐵 = (𝑀 LMHom 𝑀) & ⊢ + = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ∘f (+g‘𝑀)𝑦)) & ⊢ × = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ∘ 𝑦)) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ · = (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ 𝐵 ↦ (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠 ‘𝑀)𝑦)) ⇒ ⊢ (𝑀 ∈ 𝑋 → (MEndo‘𝑀) = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉})) | ||
| Theorem | mendbas 43151 | Base set of the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015.) |
| ⊢ 𝐴 = (MEndo‘𝑀) ⇒ ⊢ (𝑀 LMHom 𝑀) = (Base‘𝐴) | ||
| Theorem | mendplusgfval 43152* | Addition in the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015.) (Proof shortened by AV, 31-Oct-2024.) |
| ⊢ 𝐴 = (MEndo‘𝑀) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ + = (+g‘𝑀) ⇒ ⊢ (+g‘𝐴) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ∘f + 𝑦)) | ||
| Theorem | mendplusg 43153 | A specific addition in the module endomorphism algebra. (Contributed by Stefan O'Rear, 3-Sep-2015.) |
| ⊢ 𝐴 = (MEndo‘𝑀) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ + = (+g‘𝑀) & ⊢ ✚ = (+g‘𝐴) ⇒ ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ✚ 𝑌) = (𝑋 ∘f + 𝑌)) | ||
| Theorem | mendmulrfval 43154* | Multiplication in the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015.) (Proof shortened by AV, 31-Oct-2024.) |
| ⊢ 𝐴 = (MEndo‘𝑀) & ⊢ 𝐵 = (Base‘𝐴) ⇒ ⊢ (.r‘𝐴) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ∘ 𝑦)) | ||
| Theorem | mendmulr 43155 | A specific multiplication in the module endormoprhism algebra. (Contributed by Stefan O'Rear, 3-Sep-2015.) |
| ⊢ 𝐴 = (MEndo‘𝑀) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ · = (.r‘𝐴) ⇒ ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) = (𝑋 ∘ 𝑌)) | ||
| Theorem | mendsca 43156 | The module endomorphism algebra has the same scalars as the underlying module. (Contributed by Stefan O'Rear, 2-Sep-2015.) (Proof shortened by AV, 31-Oct-2024.) |
| ⊢ 𝐴 = (MEndo‘𝑀) & ⊢ 𝑆 = (Scalar‘𝑀) ⇒ ⊢ 𝑆 = (Scalar‘𝐴) | ||
| Theorem | mendvscafval 43157* | Scalar multiplication in the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015.) (Proof shortened by AV, 31-Oct-2024.) |
| ⊢ 𝐴 = (MEndo‘𝑀) & ⊢ · = ( ·𝑠 ‘𝑀) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝐸 = (Base‘𝑀) ⇒ ⊢ ( ·𝑠 ‘𝐴) = (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦)) | ||
| Theorem | mendvsca 43158 | A specific scalar multiplication in the module endomorphism algebra. (Contributed by Stefan O'Rear, 3-Sep-2015.) |
| ⊢ 𝐴 = (MEndo‘𝑀) & ⊢ · = ( ·𝑠 ‘𝑀) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝐸 = (Base‘𝑀) & ⊢ ∙ = ( ·𝑠 ‘𝐴) ⇒ ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∙ 𝑌) = ((𝐸 × {𝑋}) ∘f · 𝑌)) | ||
| Theorem | mendring 43159 | The module endomorphism algebra is a ring. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ 𝐴 = (MEndo‘𝑀) ⇒ ⊢ (𝑀 ∈ LMod → 𝐴 ∈ Ring) | ||
| Theorem | mendlmod 43160 | The module endomorphism algebra is a left module. (Contributed by Mario Carneiro, 22-Sep-2015.) |
| ⊢ 𝐴 = (MEndo‘𝑀) & ⊢ 𝑆 = (Scalar‘𝑀) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → 𝐴 ∈ LMod) | ||
| Theorem | mendassa 43161 | The module endomorphism algebra is an algebra. (Contributed by Mario Carneiro, 22-Sep-2015.) |
| ⊢ 𝐴 = (MEndo‘𝑀) & ⊢ 𝑆 = (Scalar‘𝑀) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → 𝐴 ∈ AssAlg) | ||
| Theorem | idomodle 43162* | Limit on the number of 𝑁-th roots of unity in an integral domain. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
| ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) ⇒ ⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → (♯‘{𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁}) ≤ 𝑁) | ||
| Theorem | fiuneneq 43163 | Two finite sets of equal size have a union of the same size iff they were equal. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
| ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Fin) → ((𝐴 ∪ 𝐵) ≈ 𝐴 ↔ 𝐴 = 𝐵)) | ||
| Theorem | idomsubgmo 43164* | The units of an integral domain have at most one subgroup of any single finite cardinality. (Contributed by Stefan O'Rear, 12-Sep-2015.) (Revised by NM, 17-Jun-2017.) |
| ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ⇒ ⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → ∃*𝑦 ∈ (SubGrp‘𝐺)(♯‘𝑦) = 𝑁) | ||
| Theorem | proot1mul 43165 | Any primitive 𝑁-th root of unity is a multiple of any other. (Contributed by Stefan O'Rear, 2-Nov-2015.) |
| ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) & ⊢ 𝑂 = (od‘𝐺) & ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) ⇒ ⊢ (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑋 ∈ (◡𝑂 “ {𝑁}) ∧ 𝑌 ∈ (◡𝑂 “ {𝑁}))) → 𝑋 ∈ (𝐾‘{𝑌})) | ||
| Theorem | proot1hash 43166 | If an integral domain has a primitive 𝑁-th root of unity, it has exactly (ϕ‘𝑁) of them. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
| ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) & ⊢ 𝑂 = (od‘𝐺) ⇒ ⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (◡𝑂 “ {𝑁})) → (♯‘(◡𝑂 “ {𝑁})) = (ϕ‘𝑁)) | ||
| Theorem | proot1ex 43167 | The complex field has primitive 𝑁-th roots of unity for all 𝑁. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
| ⊢ 𝐺 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) & ⊢ 𝑂 = (od‘𝐺) ⇒ ⊢ (𝑁 ∈ ℕ → (-1↑𝑐(2 / 𝑁)) ∈ (◡𝑂 “ {𝑁})) | ||
| Syntax | ccytp 43168 | Syntax for the sequence of cyclotomic polynomials. |
| class CytP | ||
| Definition | df-cytp 43169* | The Nth cyclotomic polynomial is the polynomial which has as its zeros precisely the primitive Nth roots of unity. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ CytP = (𝑛 ∈ ℕ ↦ ((mulGrp‘(Poly1‘ℂfld)) Σg (𝑟 ∈ (◡(od‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) “ {𝑛}) ↦ ((var1‘ℂfld)(-g‘(Poly1‘ℂfld))((algSc‘(Poly1‘ℂfld))‘𝑟))))) | ||
| Theorem | mon1psubm 43170 | Monic polynomials are a multiplicative submonoid. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑀 = (Monic1p‘𝑅) & ⊢ 𝑈 = (mulGrp‘𝑃) ⇒ ⊢ (𝑅 ∈ NzRing → 𝑀 ∈ (SubMnd‘𝑈)) | ||
| Theorem | deg1mhm 43171 | Homomorphic property of the polynomial degree. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
| ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 0 = (0g‘𝑃) & ⊢ 𝑌 = ((mulGrp‘𝑃) ↾s (𝐵 ∖ { 0 })) & ⊢ 𝑁 = (ℂfld ↾s ℕ0) ⇒ ⊢ (𝑅 ∈ Domn → (𝐷 ↾ (𝐵 ∖ { 0 })) ∈ (𝑌 MndHom 𝑁)) | ||
| Theorem | cytpfn 43172 | Functionality of the cyclotomic polynomial sequence. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ CytP Fn ℕ | ||
| Theorem | cytpval 43173* | Substitutions for the Nth cyclotomic polynomial. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ 𝑇 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) & ⊢ 𝑂 = (od‘𝑇) & ⊢ 𝑃 = (Poly1‘ℂfld) & ⊢ 𝑋 = (var1‘ℂfld) & ⊢ 𝑄 = (mulGrp‘𝑃) & ⊢ − = (-g‘𝑃) & ⊢ 𝐴 = (algSc‘𝑃) ⇒ ⊢ (𝑁 ∈ ℕ → (CytP‘𝑁) = (𝑄 Σg (𝑟 ∈ (◡𝑂 “ {𝑁}) ↦ (𝑋 − (𝐴‘𝑟))))) | ||
| Theorem | fgraphopab 43174* | Express a function as a subset of the Cartesian product. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
| ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) ∧ (𝐹‘𝑎) = 𝑏)}) | ||
| Theorem | fgraphxp 43175* | Express a function as a subset of the Cartesian product. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
| ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 = {𝑥 ∈ (𝐴 × 𝐵) ∣ (𝐹‘(1st ‘𝑥)) = (2nd ‘𝑥)}) | ||
| Theorem | hausgraph 43176 | The graph of a continuous function into a Hausdorff space is closed. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
| ⊢ ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 ∈ (Clsd‘(𝐽 ×t 𝐾))) | ||
| Syntax | ctopsep 43177 | The class of separable topologies. |
| class TopSep | ||
| Syntax | ctoplnd 43178 | The class of Lindelöf topologies. |
| class TopLnd | ||
| Definition | df-topsep 43179* | A topology is separable iff it has a countable dense subset. (Contributed by Stefan O'Rear, 8-Jan-2015.) |
| ⊢ TopSep = {𝑗 ∈ Top ∣ ∃𝑥 ∈ 𝒫 ∪ 𝑗(𝑥 ≼ ω ∧ ((cls‘𝑗)‘𝑥) = ∪ 𝑗)} | ||
| Definition | df-toplnd 43180* | A topology is Lindelöf iff every open cover has a countable subcover. (Contributed by Stefan O'Rear, 8-Jan-2015.) |
| ⊢ TopLnd = {𝑥 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑥(∪ 𝑥 = ∪ 𝑦 → ∃𝑧 ∈ 𝒫 𝑥(𝑧 ≼ ω ∧ ∪ 𝑥 = ∪ 𝑧))} | ||
| Theorem | r1sssucd 43181 | Deductive form of r1sssuc 9795. (Contributed by Noam Pasman, 19-Jan-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ On) ⇒ ⊢ (𝜑 → (𝑅1‘𝐴) ⊆ (𝑅1‘suc 𝐴)) | ||
| Theorem | iocunico 43182 | Split an open interval into two pieces at point B, Co-author TA. (Contributed by Jon Pennant, 8-Jun-2019.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ 𝐵 < 𝐶)) → ((𝐴(,]𝐵) ∪ (𝐵[,)𝐶)) = (𝐴(,)𝐶)) | ||
| Theorem | iocinico 43183 | The intersection of two sets that meet at a point is that point. (Contributed by Jon Pennant, 12-Jun-2019.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ 𝐵 < 𝐶)) → ((𝐴(,]𝐵) ∩ (𝐵[,)𝐶)) = {𝐵}) | ||
| Theorem | iocmbl 43184 | An open-below, closed-above real interval is measurable. (Contributed by Jon Pennant, 12-Jun-2019.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → (𝐴(,]𝐵) ∈ dom vol) | ||
| Theorem | cnioobibld 43185* | A bounded, continuous function on an open bounded interval is integrable. The function must be bounded. For a counterexample, consider 𝐹 = (𝑥 ∈ (0(,)1) ↦ (1 / 𝑥)). See cniccibl 25792 for closed bounded intervals. (Contributed by Jon Pennant, 31-May-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ)) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥) ⇒ ⊢ (𝜑 → 𝐹 ∈ 𝐿1) | ||
| Theorem | arearect 43186 | The area of a rectangle whose sides are parallel to the coordinate axes in (ℝ × ℝ) is its width multiplied by its height. (Contributed by Jon Pennant, 19-Mar-2019.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈ ℝ & ⊢ 𝐷 ∈ ℝ & ⊢ 𝐴 ≤ 𝐵 & ⊢ 𝐶 ≤ 𝐷 & ⊢ 𝑆 = ((𝐴[,]𝐵) × (𝐶[,]𝐷)) ⇒ ⊢ (area‘𝑆) = ((𝐵 − 𝐴) · (𝐷 − 𝐶)) | ||
| Theorem | areaquad 43187* | The area of a quadrilateral with two sides which are parallel to the y-axis in (ℝ × ℝ) is its width multiplied by the average height of its higher edge minus the average height of its lower edge. Co-author TA. (Contributed by Jon Pennant, 31-May-2019.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈ ℝ & ⊢ 𝐷 ∈ ℝ & ⊢ 𝐸 ∈ ℝ & ⊢ 𝐹 ∈ ℝ & ⊢ 𝐴 < 𝐵 & ⊢ 𝐶 ≤ 𝐸 & ⊢ 𝐷 ≤ 𝐹 & ⊢ 𝑈 = (𝐶 + (((𝑥 − 𝐴) / (𝐵 − 𝐴)) · (𝐷 − 𝐶))) & ⊢ 𝑉 = (𝐸 + (((𝑥 − 𝐴) / (𝐵 − 𝐴)) · (𝐹 − 𝐸))) & ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝑈[,]𝑉))} ⇒ ⊢ (area‘𝑆) = ((((𝐹 + 𝐸) / 2) − ((𝐷 + 𝐶) / 2)) · (𝐵 − 𝐴)) | ||
| Theorem | uniel 43188* | Two ways to say a union is an element of a class. (Contributed by RP, 27-Jan-2025.) |
| ⊢ (∪ 𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝑦)) | ||
| Theorem | unielss 43189* | Two ways to say the union of a class is an element of a subclass. (Contributed by RP, 29-Jan-2025.) |
| ⊢ (𝐴 ⊆ 𝐵 → (∪ 𝐵 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥)) | ||
| Theorem | unielid 43190* | Two ways to say the union of a class is an element of that class. (Contributed by RP, 27-Jan-2025.) |
| ⊢ (∪ 𝐴 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥) | ||
| Theorem | ssunib 43191* | Two ways to say a class is a subclass of a union. (Contributed by RP, 27-Jan-2025.) |
| ⊢ (𝐴 ⊆ ∪ 𝐵 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ∈ 𝑦) | ||
| Theorem | rp-intrabeq 43192* | Equality theorem for supremum of sets of ordinals. (Contributed by RP, 23-Jan-2025.) |
| ⊢ (𝐴 = 𝐵 → ∩ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥} = ∩ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥}) | ||
| Theorem | rp-unirabeq 43193* | Equality theorem for infimum of non-empty classes of ordinals. (Contributed by RP, 23-Jan-2025.) |
| ⊢ (𝐴 = 𝐵 → ∪ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦} = ∪ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦}) | ||
| Theorem | onmaxnelsup 43194* | Two ways to say the maximum element of a class of ordinals is also the supremum of that class. (Contributed by RP, 27-Jan-2025.) |
| ⊢ (𝐴 ⊆ On → (¬ 𝐴 ⊆ ∪ 𝐴 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥)) | ||
| Theorem | onsupneqmaxlim0 43195 | If the supremum of a class of ordinals is not in that class, then the supremum is a limit ordinal or empty. (Contributed by RP, 27-Jan-2025.) |
| ⊢ (𝐴 ⊆ On → (𝐴 ⊆ ∪ 𝐴 → ∪ 𝐴 = ∪ ∪ 𝐴)) | ||
| Theorem | onsupcl2 43196 | The supremum of a set of ordinals is an ordinal. (Contributed by RP, 23-Jan-2025.) |
| ⊢ (𝐴 ∈ 𝒫 On → ∪ 𝐴 ∈ On) | ||
| Theorem | onuniintrab 43197* | The union of a set of ordinals is the intersection of every ordinal greater-than-or-equal to every member of the set. Closed form of uniordint 7793. (Contributed by RP, 28-Jan-2025.) |
| ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉) → ∪ 𝐴 = ∩ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥}) | ||
| Theorem | onintunirab 43198* | The intersection of a non-empty class of ordinals is the union of every ordinal less-than-or-equal to every element of that class. (Contributed by RP, 29-Jan-2025.) |
| ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∩ 𝐴 = ∪ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦}) | ||
| Theorem | onsupnmax 43199 | If the union of a class of ordinals is not the maximum element of that class, then the union is a limit ordinal or empty. But this isn't a biconditional since 𝐴 could be a non-empty set where a limit ordinal or the empty set happens to be the largest element. (Contributed by RP, 27-Jan-2025.) |
| ⊢ (𝐴 ⊆ On → (¬ ∪ 𝐴 ∈ 𝐴 → ∪ 𝐴 = ∪ ∪ 𝐴)) | ||
| Theorem | onsupuni 43200 | The supremum of a set of ordinals is the union of that set. Lemma 2.10 of [Schloeder] p. 5. (Contributed by RP, 19-Jan-2025.) |
| ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉) → sup(𝐴, On, E ) = ∪ 𝐴) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |