Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2albi | Structured version Visualization version GIF version |
Description: Theorem *11.33 in [WhiteheadRussell] p. 162. Theorem 19.15 of [Margaris] p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 24-May-2011.) |
Ref | Expression |
---|---|
2albi | ⊢ (∀𝑥∀𝑦(𝜑 ↔ 𝜓) → (∀𝑥∀𝑦𝜑 ↔ ∀𝑥∀𝑦𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albi 1822 | . . 3 ⊢ (∀𝑦(𝜑 ↔ 𝜓) → (∀𝑦𝜑 ↔ ∀𝑦𝜓)) | |
2 | 1 | alimi 1815 | . 2 ⊢ (∀𝑥∀𝑦(𝜑 ↔ 𝜓) → ∀𝑥(∀𝑦𝜑 ↔ ∀𝑦𝜓)) |
3 | albi 1822 | . 2 ⊢ (∀𝑥(∀𝑦𝜑 ↔ ∀𝑦𝜓) → (∀𝑥∀𝑦𝜑 ↔ ∀𝑥∀𝑦𝜓)) | |
4 | 2, 3 | syl 17 | 1 ⊢ (∀𝑥∀𝑦(𝜑 ↔ 𝜓) → (∀𝑥∀𝑦𝜑 ↔ ∀𝑥∀𝑦𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |