Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  a1i24 Structured version   Visualization version   GIF version

Theorem a1i24 34490
Description: Add two antecedents to a wff. Deduction associated with a1i13 27. (Contributed by Jeff Hankins, 5-Aug-2009.)
Hypothesis
Ref Expression
a1i24.1 (𝜑 → (𝜒𝜏))
Assertion
Ref Expression
a1i24 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))

Proof of Theorem a1i24
StepHypRef Expression
1 a1i24.1 . . 3 (𝜑 → (𝜒𝜏))
21a1dd 50 . 2 (𝜑 → (𝜒 → (𝜃𝜏)))
32a1d 25 1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator