| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > a1i13 | Structured version Visualization version GIF version | ||
| Description: Add two antecedents to a wff. (Contributed by Jeff Hankins, 4-Aug-2009.) |
| Ref | Expression |
|---|---|
| a1i13.1 | ⊢ (𝜓 → 𝜃) |
| Ref | Expression |
|---|---|
| a1i13 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | a1i13.1 | . . 3 ⊢ (𝜓 → 𝜃) | |
| 2 | 1 | a1d 25 | . 2 ⊢ (𝜓 → (𝜒 → 𝜃)) |
| 3 | 2 | a1i 11 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: propeqop 5482 seqshft2 14046 seqsplit 14053 resqrex 15269 2mulprm 16712 comppfsc 23470 filconn 23821 sinq12ge0 26469 usgr2pth 29746 elwspths2on 29942 frgr3vlem1 30254 3vfriswmgrlem 30258 onsupnmax 43252 cantnfresb 43348 dflim5 43353 |
| Copyright terms: Public domain | W3C validator |