MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  a1i13 Structured version   Visualization version   GIF version

Theorem a1i13 27
Description: Add two antecedents to a wff. (Contributed by Jeff Hankins, 4-Aug-2009.)
Hypothesis
Ref Expression
a1i13.1 (𝜓𝜃)
Assertion
Ref Expression
a1i13 (𝜑 → (𝜓 → (𝜒𝜃)))

Proof of Theorem a1i13
StepHypRef Expression
1 a1i13.1 . . 3 (𝜓𝜃)
21a1d 25 . 2 (𝜓 → (𝜒𝜃))
32a1i 11 1 (𝜑 → (𝜓 → (𝜒𝜃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  propeqop  5482  seqshft2  14046  seqsplit  14053  resqrex  15269  2mulprm  16712  comppfsc  23470  filconn  23821  sinq12ge0  26469  usgr2pth  29746  elwspths2on  29942  frgr3vlem1  30254  3vfriswmgrlem  30258  onsupnmax  43252  cantnfresb  43348  dflim5  43353
  Copyright terms: Public domain W3C validator