| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > a1i13 | Structured version Visualization version GIF version | ||
| Description: Add two antecedents to a wff. (Contributed by Jeff Hankins, 4-Aug-2009.) |
| Ref | Expression |
|---|---|
| a1i13.1 | ⊢ (𝜓 → 𝜃) |
| Ref | Expression |
|---|---|
| a1i13 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | a1i13.1 | . . 3 ⊢ (𝜓 → 𝜃) | |
| 2 | 1 | a1d 25 | . 2 ⊢ (𝜓 → (𝜒 → 𝜃)) |
| 3 | 2 | a1i 11 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: propeqop 5467 seqshft2 13993 seqsplit 14000 resqrex 15216 2mulprm 16663 comppfsc 23419 filconn 23770 sinq12ge0 26417 usgr2pth 29694 elwspths2on 29890 frgr3vlem1 30202 3vfriswmgrlem 30206 onsupnmax 43217 cantnfresb 43313 dflim5 43318 |
| Copyright terms: Public domain | W3C validator |