Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > a1i13 | Structured version Visualization version GIF version |
Description: Add two antecedents to a wff. (Contributed by Jeff Hankins, 4-Aug-2009.) |
Ref | Expression |
---|---|
a1i13.1 | ⊢ (𝜓 → 𝜃) |
Ref | Expression |
---|---|
a1i13 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | a1i13.1 | . . 3 ⊢ (𝜓 → 𝜃) | |
2 | 1 | a1d 25 | . 2 ⊢ (𝜓 → (𝜒 → 𝜃)) |
3 | 2 | a1i 11 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: propeqop 5415 seqshft2 13677 seqsplit 13684 resqrex 14890 2mulprm 16326 comppfsc 22591 filconn 22942 sinq12ge0 25570 usgr2pth 28033 elwspths2on 28226 frgr3vlem1 28538 3vfriswmgrlem 28542 |
Copyright terms: Public domain | W3C validator |