| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > a1i13 | Structured version Visualization version GIF version | ||
| Description: Add two antecedents to a wff. (Contributed by Jeff Hankins, 4-Aug-2009.) |
| Ref | Expression |
|---|---|
| a1i13.1 | ⊢ (𝜓 → 𝜃) |
| Ref | Expression |
|---|---|
| a1i13 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | a1i13.1 | . . 3 ⊢ (𝜓 → 𝜃) | |
| 2 | 1 | a1d 25 | . 2 ⊢ (𝜓 → (𝜒 → 𝜃)) |
| 3 | 2 | a1i 11 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: propeqop 5452 seqshft2 13942 seqsplit 13949 resqrex 15164 2mulprm 16611 comppfsc 23467 filconn 23818 sinq12ge0 26464 usgr2pth 29763 elwspths2on 29961 elwspths2onw 29962 frgr3vlem1 30274 3vfriswmgrlem 30278 onsupnmax 43385 cantnfresb 43481 dflim5 43486 |
| Copyright terms: Public domain | W3C validator |