MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  a1i13 Structured version   Visualization version   GIF version

Theorem a1i13 27
Description: Add two antecedents to a wff. (Contributed by Jeff Hankins, 4-Aug-2009.)
Hypothesis
Ref Expression
a1i13.1 (𝜓𝜃)
Assertion
Ref Expression
a1i13 (𝜑 → (𝜓 → (𝜒𝜃)))

Proof of Theorem a1i13
StepHypRef Expression
1 a1i13.1 . . 3 (𝜓𝜃)
21a1d 25 . 2 (𝜓 → (𝜒𝜃))
32a1i 11 1 (𝜑 → (𝜓 → (𝜒𝜃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  propeqop  5454  seqshft2  13953  seqsplit  13960  resqrex  15175  2mulprm  16622  comppfsc  23435  filconn  23786  sinq12ge0  26433  usgr2pth  29727  elwspths2on  29923  frgr3vlem1  30235  3vfriswmgrlem  30239  onsupnmax  43204  cantnfresb  43300  dflim5  43305
  Copyright terms: Public domain W3C validator